ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  archpr GIF version

Theorem archpr 7419
Description: For any positive real, there is an integer that is greater than it. This is also known as the "archimedean property". The integer 𝑥 is embedded into the reals as described at nnprlu 7329. (Contributed by Jim Kingdon, 22-Apr-2020.)
Assertion
Ref Expression
archpr (𝐴P → ∃𝑥N 𝐴<P ⟨{𝑙𝑙 <Q [⟨𝑥, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1o⟩] ~Q <Q 𝑢}⟩)
Distinct variable group:   𝐴,𝑙,𝑢,𝑥

Proof of Theorem archpr
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prop 7251 . . 3 (𝐴P → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P)
2 prmu 7254 . . 3 (⟨(1st𝐴), (2nd𝐴)⟩ ∈ P → ∃𝑧Q 𝑧 ∈ (2nd𝐴))
31, 2syl 14 . 2 (𝐴P → ∃𝑧Q 𝑧 ∈ (2nd𝐴))
4 archnqq 7193 . . . 4 (𝑧Q → ∃𝑥N 𝑧 <Q [⟨𝑥, 1o⟩] ~Q )
54ad2antrl 481 . . 3 ((𝐴P ∧ (𝑧Q𝑧 ∈ (2nd𝐴))) → ∃𝑥N 𝑧 <Q [⟨𝑥, 1o⟩] ~Q )
6 simprl 505 . . . . . . . 8 ((𝐴P ∧ (𝑧Q𝑧 ∈ (2nd𝐴))) → 𝑧Q)
76ad2antrr 479 . . . . . . 7 ((((𝐴P ∧ (𝑧Q𝑧 ∈ (2nd𝐴))) ∧ 𝑥N) ∧ 𝑧 <Q [⟨𝑥, 1o⟩] ~Q ) → 𝑧Q)
8 simprr 506 . . . . . . . 8 ((𝐴P ∧ (𝑧Q𝑧 ∈ (2nd𝐴))) → 𝑧 ∈ (2nd𝐴))
98ad2antrr 479 . . . . . . 7 ((((𝐴P ∧ (𝑧Q𝑧 ∈ (2nd𝐴))) ∧ 𝑥N) ∧ 𝑧 <Q [⟨𝑥, 1o⟩] ~Q ) → 𝑧 ∈ (2nd𝐴))
10 simpr 109 . . . . . . . 8 ((((𝐴P ∧ (𝑧Q𝑧 ∈ (2nd𝐴))) ∧ 𝑥N) ∧ 𝑧 <Q [⟨𝑥, 1o⟩] ~Q ) → 𝑧 <Q [⟨𝑥, 1o⟩] ~Q )
11 vex 2663 . . . . . . . . 9 𝑧 ∈ V
12 breq1 3902 . . . . . . . . 9 (𝑙 = 𝑧 → (𝑙 <Q [⟨𝑥, 1o⟩] ~Q𝑧 <Q [⟨𝑥, 1o⟩] ~Q ))
13 ltnqex 7325 . . . . . . . . . 10 {𝑙𝑙 <Q [⟨𝑥, 1o⟩] ~Q } ∈ V
14 gtnqex 7326 . . . . . . . . . 10 {𝑢 ∣ [⟨𝑥, 1o⟩] ~Q <Q 𝑢} ∈ V
1513, 14op1st 6012 . . . . . . . . 9 (1st ‘⟨{𝑙𝑙 <Q [⟨𝑥, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1o⟩] ~Q <Q 𝑢}⟩) = {𝑙𝑙 <Q [⟨𝑥, 1o⟩] ~Q }
1611, 12, 15elab2 2805 . . . . . . . 8 (𝑧 ∈ (1st ‘⟨{𝑙𝑙 <Q [⟨𝑥, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1o⟩] ~Q <Q 𝑢}⟩) ↔ 𝑧 <Q [⟨𝑥, 1o⟩] ~Q )
1710, 16sylibr 133 . . . . . . 7 ((((𝐴P ∧ (𝑧Q𝑧 ∈ (2nd𝐴))) ∧ 𝑥N) ∧ 𝑧 <Q [⟨𝑥, 1o⟩] ~Q ) → 𝑧 ∈ (1st ‘⟨{𝑙𝑙 <Q [⟨𝑥, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1o⟩] ~Q <Q 𝑢}⟩))
18 eleq1 2180 . . . . . . . . 9 (𝑤 = 𝑧 → (𝑤 ∈ (2nd𝐴) ↔ 𝑧 ∈ (2nd𝐴)))
19 eleq1 2180 . . . . . . . . 9 (𝑤 = 𝑧 → (𝑤 ∈ (1st ‘⟨{𝑙𝑙 <Q [⟨𝑥, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1o⟩] ~Q <Q 𝑢}⟩) ↔ 𝑧 ∈ (1st ‘⟨{𝑙𝑙 <Q [⟨𝑥, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1o⟩] ~Q <Q 𝑢}⟩)))
2018, 19anbi12d 464 . . . . . . . 8 (𝑤 = 𝑧 → ((𝑤 ∈ (2nd𝐴) ∧ 𝑤 ∈ (1st ‘⟨{𝑙𝑙 <Q [⟨𝑥, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1o⟩] ~Q <Q 𝑢}⟩)) ↔ (𝑧 ∈ (2nd𝐴) ∧ 𝑧 ∈ (1st ‘⟨{𝑙𝑙 <Q [⟨𝑥, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1o⟩] ~Q <Q 𝑢}⟩))))
2120rspcev 2763 . . . . . . 7 ((𝑧Q ∧ (𝑧 ∈ (2nd𝐴) ∧ 𝑧 ∈ (1st ‘⟨{𝑙𝑙 <Q [⟨𝑥, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1o⟩] ~Q <Q 𝑢}⟩))) → ∃𝑤Q (𝑤 ∈ (2nd𝐴) ∧ 𝑤 ∈ (1st ‘⟨{𝑙𝑙 <Q [⟨𝑥, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1o⟩] ~Q <Q 𝑢}⟩)))
227, 9, 17, 21syl12anc 1199 . . . . . 6 ((((𝐴P ∧ (𝑧Q𝑧 ∈ (2nd𝐴))) ∧ 𝑥N) ∧ 𝑧 <Q [⟨𝑥, 1o⟩] ~Q ) → ∃𝑤Q (𝑤 ∈ (2nd𝐴) ∧ 𝑤 ∈ (1st ‘⟨{𝑙𝑙 <Q [⟨𝑥, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1o⟩] ~Q <Q 𝑢}⟩)))
23 simplll 507 . . . . . . 7 ((((𝐴P ∧ (𝑧Q𝑧 ∈ (2nd𝐴))) ∧ 𝑥N) ∧ 𝑧 <Q [⟨𝑥, 1o⟩] ~Q ) → 𝐴P)
24 nnprlu 7329 . . . . . . . 8 (𝑥N → ⟨{𝑙𝑙 <Q [⟨𝑥, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1o⟩] ~Q <Q 𝑢}⟩ ∈ P)
2524ad2antlr 480 . . . . . . 7 ((((𝐴P ∧ (𝑧Q𝑧 ∈ (2nd𝐴))) ∧ 𝑥N) ∧ 𝑧 <Q [⟨𝑥, 1o⟩] ~Q ) → ⟨{𝑙𝑙 <Q [⟨𝑥, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1o⟩] ~Q <Q 𝑢}⟩ ∈ P)
26 ltdfpr 7282 . . . . . . 7 ((𝐴P ∧ ⟨{𝑙𝑙 <Q [⟨𝑥, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1o⟩] ~Q <Q 𝑢}⟩ ∈ P) → (𝐴<P ⟨{𝑙𝑙 <Q [⟨𝑥, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1o⟩] ~Q <Q 𝑢}⟩ ↔ ∃𝑤Q (𝑤 ∈ (2nd𝐴) ∧ 𝑤 ∈ (1st ‘⟨{𝑙𝑙 <Q [⟨𝑥, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1o⟩] ~Q <Q 𝑢}⟩))))
2723, 25, 26syl2anc 408 . . . . . 6 ((((𝐴P ∧ (𝑧Q𝑧 ∈ (2nd𝐴))) ∧ 𝑥N) ∧ 𝑧 <Q [⟨𝑥, 1o⟩] ~Q ) → (𝐴<P ⟨{𝑙𝑙 <Q [⟨𝑥, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1o⟩] ~Q <Q 𝑢}⟩ ↔ ∃𝑤Q (𝑤 ∈ (2nd𝐴) ∧ 𝑤 ∈ (1st ‘⟨{𝑙𝑙 <Q [⟨𝑥, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1o⟩] ~Q <Q 𝑢}⟩))))
2822, 27mpbird 166 . . . . 5 ((((𝐴P ∧ (𝑧Q𝑧 ∈ (2nd𝐴))) ∧ 𝑥N) ∧ 𝑧 <Q [⟨𝑥, 1o⟩] ~Q ) → 𝐴<P ⟨{𝑙𝑙 <Q [⟨𝑥, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1o⟩] ~Q <Q 𝑢}⟩)
2928ex 114 . . . 4 (((𝐴P ∧ (𝑧Q𝑧 ∈ (2nd𝐴))) ∧ 𝑥N) → (𝑧 <Q [⟨𝑥, 1o⟩] ~Q𝐴<P ⟨{𝑙𝑙 <Q [⟨𝑥, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1o⟩] ~Q <Q 𝑢}⟩))
3029reximdva 2511 . . 3 ((𝐴P ∧ (𝑧Q𝑧 ∈ (2nd𝐴))) → (∃𝑥N 𝑧 <Q [⟨𝑥, 1o⟩] ~Q → ∃𝑥N 𝐴<P ⟨{𝑙𝑙 <Q [⟨𝑥, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1o⟩] ~Q <Q 𝑢}⟩))
315, 30mpd 13 . 2 ((𝐴P ∧ (𝑧Q𝑧 ∈ (2nd𝐴))) → ∃𝑥N 𝐴<P ⟨{𝑙𝑙 <Q [⟨𝑥, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1o⟩] ~Q <Q 𝑢}⟩)
323, 31rexlimddv 2531 1 (𝐴P → ∃𝑥N 𝐴<P ⟨{𝑙𝑙 <Q [⟨𝑥, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1o⟩] ~Q <Q 𝑢}⟩)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wcel 1465  {cab 2103  wrex 2394  cop 3500   class class class wbr 3899  cfv 5093  1st c1st 6004  2nd c2nd 6005  1oc1o 6274  [cec 6395  Ncnpi 7048   ~Q ceq 7055  Qcnq 7056   <Q cltq 7061  Pcnp 7067  <P cltp 7071
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 588  ax-in2 589  ax-io 683  ax-5 1408  ax-7 1409  ax-gen 1410  ax-ie1 1454  ax-ie2 1455  ax-8 1467  ax-10 1468  ax-11 1469  ax-i12 1470  ax-bndl 1471  ax-4 1472  ax-13 1476  ax-14 1477  ax-17 1491  ax-i9 1495  ax-ial 1499  ax-i5r 1500  ax-ext 2099  ax-coll 4013  ax-sep 4016  ax-nul 4024  ax-pow 4068  ax-pr 4101  ax-un 4325  ax-setind 4422  ax-iinf 4472
This theorem depends on definitions:  df-bi 116  df-dc 805  df-3or 948  df-3an 949  df-tru 1319  df-fal 1322  df-nf 1422  df-sb 1721  df-eu 1980  df-mo 1981  df-clab 2104  df-cleq 2110  df-clel 2113  df-nfc 2247  df-ne 2286  df-ral 2398  df-rex 2399  df-reu 2400  df-rab 2402  df-v 2662  df-sbc 2883  df-csb 2976  df-dif 3043  df-un 3045  df-in 3047  df-ss 3054  df-nul 3334  df-pw 3482  df-sn 3503  df-pr 3504  df-op 3506  df-uni 3707  df-int 3742  df-iun 3785  df-br 3900  df-opab 3960  df-mpt 3961  df-tr 3997  df-eprel 4181  df-id 4185  df-po 4188  df-iso 4189  df-iord 4258  df-on 4260  df-suc 4263  df-iom 4475  df-xp 4515  df-rel 4516  df-cnv 4517  df-co 4518  df-dm 4519  df-rn 4520  df-res 4521  df-ima 4522  df-iota 5058  df-fun 5095  df-fn 5096  df-f 5097  df-f1 5098  df-fo 5099  df-f1o 5100  df-fv 5101  df-ov 5745  df-oprab 5746  df-mpo 5747  df-1st 6006  df-2nd 6007  df-recs 6170  df-irdg 6235  df-1o 6281  df-oadd 6285  df-omul 6286  df-er 6397  df-ec 6399  df-qs 6403  df-ni 7080  df-pli 7081  df-mi 7082  df-lti 7083  df-plpq 7120  df-mpq 7121  df-enq 7123  df-nqqs 7124  df-plqqs 7125  df-mqqs 7126  df-1nqqs 7127  df-rq 7128  df-ltnqqs 7129  df-inp 7242  df-iltp 7246
This theorem is referenced by:  archsr  7558
  Copyright terms: Public domain W3C validator