ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  asymref GIF version

Theorem asymref 4919
Description: Two ways of saying a relation is antisymmetric and reflexive. 𝑅 is the field of a relation by relfld 5062. (Contributed by NM, 6-May-2008.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
asymref ((𝑅𝑅) = ( I ↾ 𝑅) ↔ ∀𝑥 𝑅𝑦((𝑥𝑅𝑦𝑦𝑅𝑥) ↔ 𝑥 = 𝑦))
Distinct variable group:   𝑥,𝑦,𝑅

Proof of Theorem asymref
StepHypRef Expression
1 df-br 3925 . . . . . . . . . . 11 (𝑥𝑅𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑅)
2 vex 2684 . . . . . . . . . . . 12 𝑥 ∈ V
3 vex 2684 . . . . . . . . . . . 12 𝑦 ∈ V
42, 3opeluu 4366 . . . . . . . . . . 11 (⟨𝑥, 𝑦⟩ ∈ 𝑅 → (𝑥 𝑅𝑦 𝑅))
51, 4sylbi 120 . . . . . . . . . 10 (𝑥𝑅𝑦 → (𝑥 𝑅𝑦 𝑅))
65simpld 111 . . . . . . . . 9 (𝑥𝑅𝑦𝑥 𝑅)
76adantr 274 . . . . . . . 8 ((𝑥𝑅𝑦𝑦𝑅𝑥) → 𝑥 𝑅)
87pm4.71ri 389 . . . . . . 7 ((𝑥𝑅𝑦𝑦𝑅𝑥) ↔ (𝑥 𝑅 ∧ (𝑥𝑅𝑦𝑦𝑅𝑥)))
98bibi1i 227 . . . . . 6 (((𝑥𝑅𝑦𝑦𝑅𝑥) ↔ (𝑥 𝑅𝑥 = 𝑦)) ↔ ((𝑥 𝑅 ∧ (𝑥𝑅𝑦𝑦𝑅𝑥)) ↔ (𝑥 𝑅𝑥 = 𝑦)))
10 elin 3254 . . . . . . . 8 (⟨𝑥, 𝑦⟩ ∈ (𝑅𝑅) ↔ (⟨𝑥, 𝑦⟩ ∈ 𝑅 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝑅))
112, 3brcnv 4717 . . . . . . . . . 10 (𝑥𝑅𝑦𝑦𝑅𝑥)
12 df-br 3925 . . . . . . . . . 10 (𝑥𝑅𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑅)
1311, 12bitr3i 185 . . . . . . . . 9 (𝑦𝑅𝑥 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑅)
141, 13anbi12i 455 . . . . . . . 8 ((𝑥𝑅𝑦𝑦𝑅𝑥) ↔ (⟨𝑥, 𝑦⟩ ∈ 𝑅 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝑅))
1510, 14bitr4i 186 . . . . . . 7 (⟨𝑥, 𝑦⟩ ∈ (𝑅𝑅) ↔ (𝑥𝑅𝑦𝑦𝑅𝑥))
163opelres 4819 . . . . . . . 8 (⟨𝑥, 𝑦⟩ ∈ ( I ↾ 𝑅) ↔ (⟨𝑥, 𝑦⟩ ∈ I ∧ 𝑥 𝑅))
17 df-br 3925 . . . . . . . . . 10 (𝑥 I 𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ I )
183ideq 4686 . . . . . . . . . 10 (𝑥 I 𝑦𝑥 = 𝑦)
1917, 18bitr3i 185 . . . . . . . . 9 (⟨𝑥, 𝑦⟩ ∈ I ↔ 𝑥 = 𝑦)
2019anbi2ci 454 . . . . . . . 8 ((⟨𝑥, 𝑦⟩ ∈ I ∧ 𝑥 𝑅) ↔ (𝑥 𝑅𝑥 = 𝑦))
2116, 20bitri 183 . . . . . . 7 (⟨𝑥, 𝑦⟩ ∈ ( I ↾ 𝑅) ↔ (𝑥 𝑅𝑥 = 𝑦))
2215, 21bibi12i 228 . . . . . 6 ((⟨𝑥, 𝑦⟩ ∈ (𝑅𝑅) ↔ ⟨𝑥, 𝑦⟩ ∈ ( I ↾ 𝑅)) ↔ ((𝑥𝑅𝑦𝑦𝑅𝑥) ↔ (𝑥 𝑅𝑥 = 𝑦)))
23 pm5.32 448 . . . . . 6 ((𝑥 𝑅 → ((𝑥𝑅𝑦𝑦𝑅𝑥) ↔ 𝑥 = 𝑦)) ↔ ((𝑥 𝑅 ∧ (𝑥𝑅𝑦𝑦𝑅𝑥)) ↔ (𝑥 𝑅𝑥 = 𝑦)))
249, 22, 233bitr4i 211 . . . . 5 ((⟨𝑥, 𝑦⟩ ∈ (𝑅𝑅) ↔ ⟨𝑥, 𝑦⟩ ∈ ( I ↾ 𝑅)) ↔ (𝑥 𝑅 → ((𝑥𝑅𝑦𝑦𝑅𝑥) ↔ 𝑥 = 𝑦)))
2524albii 1446 . . . 4 (∀𝑦(⟨𝑥, 𝑦⟩ ∈ (𝑅𝑅) ↔ ⟨𝑥, 𝑦⟩ ∈ ( I ↾ 𝑅)) ↔ ∀𝑦(𝑥 𝑅 → ((𝑥𝑅𝑦𝑦𝑅𝑥) ↔ 𝑥 = 𝑦)))
26 19.21v 1845 . . . 4 (∀𝑦(𝑥 𝑅 → ((𝑥𝑅𝑦𝑦𝑅𝑥) ↔ 𝑥 = 𝑦)) ↔ (𝑥 𝑅 → ∀𝑦((𝑥𝑅𝑦𝑦𝑅𝑥) ↔ 𝑥 = 𝑦)))
2725, 26bitri 183 . . 3 (∀𝑦(⟨𝑥, 𝑦⟩ ∈ (𝑅𝑅) ↔ ⟨𝑥, 𝑦⟩ ∈ ( I ↾ 𝑅)) ↔ (𝑥 𝑅 → ∀𝑦((𝑥𝑅𝑦𝑦𝑅𝑥) ↔ 𝑥 = 𝑦)))
2827albii 1446 . 2 (∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ (𝑅𝑅) ↔ ⟨𝑥, 𝑦⟩ ∈ ( I ↾ 𝑅)) ↔ ∀𝑥(𝑥 𝑅 → ∀𝑦((𝑥𝑅𝑦𝑦𝑅𝑥) ↔ 𝑥 = 𝑦)))
29 relcnv 4912 . . . 4 Rel 𝑅
30 relin2 4653 . . . 4 (Rel 𝑅 → Rel (𝑅𝑅))
3129, 30ax-mp 5 . . 3 Rel (𝑅𝑅)
32 relres 4842 . . 3 Rel ( I ↾ 𝑅)
33 eqrel 4623 . . 3 ((Rel (𝑅𝑅) ∧ Rel ( I ↾ 𝑅)) → ((𝑅𝑅) = ( I ↾ 𝑅) ↔ ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ (𝑅𝑅) ↔ ⟨𝑥, 𝑦⟩ ∈ ( I ↾ 𝑅))))
3431, 32, 33mp2an 422 . 2 ((𝑅𝑅) = ( I ↾ 𝑅) ↔ ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ (𝑅𝑅) ↔ ⟨𝑥, 𝑦⟩ ∈ ( I ↾ 𝑅)))
35 df-ral 2419 . 2 (∀𝑥 𝑅𝑦((𝑥𝑅𝑦𝑦𝑅𝑥) ↔ 𝑥 = 𝑦) ↔ ∀𝑥(𝑥 𝑅 → ∀𝑦((𝑥𝑅𝑦𝑦𝑅𝑥) ↔ 𝑥 = 𝑦)))
3628, 34, 353bitr4i 211 1 ((𝑅𝑅) = ( I ↾ 𝑅) ↔ ∀𝑥 𝑅𝑦((𝑥𝑅𝑦𝑦𝑅𝑥) ↔ 𝑥 = 𝑦))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wal 1329   = wceq 1331  wcel 1480  wral 2414  cin 3065  cop 3525   cuni 3731   class class class wbr 3924   I cid 4205  ccnv 4533  cres 4536  Rel wrel 4539
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-pow 4093  ax-pr 4126
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ral 2419  df-rex 2420  df-v 2683  df-un 3070  df-in 3072  df-ss 3079  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-br 3925  df-opab 3985  df-id 4210  df-xp 4540  df-rel 4541  df-cnv 4542  df-res 4546
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator