![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ax11a2 | GIF version |
Description: Derive ax-11o 1746 from a hypothesis in the form of ax-11 1438. The hypothesis is even weaker than ax-11 1438, with 𝑧 both distinct from 𝑥 and not occurring in 𝜑. Thus the hypothesis provides an alternate axiom that can be used in place of ax11o 1745. (Contributed by NM, 2-Feb-2007.) |
Ref | Expression |
---|---|
ax11a2.1 | ⊢ (𝑥 = 𝑧 → (∀𝑧𝜑 → ∀𝑥(𝑥 = 𝑧 → 𝜑))) |
Ref | Expression |
---|---|
ax11a2 | ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-17 1460 | . . 3 ⊢ (𝜑 → ∀𝑧𝜑) | |
2 | ax11a2.1 | . . 3 ⊢ (𝑥 = 𝑧 → (∀𝑧𝜑 → ∀𝑥(𝑥 = 𝑧 → 𝜑))) | |
3 | 1, 2 | syl5 32 | . 2 ⊢ (𝑥 = 𝑧 → (𝜑 → ∀𝑥(𝑥 = 𝑧 → 𝜑))) |
4 | 3 | ax11v2 1743 | 1 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑)))) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∀wal 1283 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in2 578 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-4 1441 ax-17 1460 ax-i9 1464 ax-ial 1468 |
This theorem depends on definitions: df-bi 115 df-nf 1391 df-sb 1688 |
This theorem is referenced by: ax11o 1745 |
Copyright terms: Public domain | W3C validator |