ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ax1rid GIF version

Theorem ax1rid 7685
Description: 1 is an identity element for real multiplication. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-1rid 7727. (Contributed by Scott Fenton, 3-Jan-2013.) (New usage is discouraged.)
Assertion
Ref Expression
ax1rid (𝐴 ∈ ℝ → (𝐴 · 1) = 𝐴)

Proof of Theorem ax1rid
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-r 7630 . 2 ℝ = (R × {0R})
2 oveq1 5781 . . 3 (⟨𝑥, 𝑦⟩ = 𝐴 → (⟨𝑥, 𝑦⟩ · 1) = (𝐴 · 1))
3 id 19 . . 3 (⟨𝑥, 𝑦⟩ = 𝐴 → ⟨𝑥, 𝑦⟩ = 𝐴)
42, 3eqeq12d 2154 . 2 (⟨𝑥, 𝑦⟩ = 𝐴 → ((⟨𝑥, 𝑦⟩ · 1) = ⟨𝑥, 𝑦⟩ ↔ (𝐴 · 1) = 𝐴))
5 elsni 3545 . . 3 (𝑦 ∈ {0R} → 𝑦 = 0R)
6 df-1 7628 . . . . . . 7 1 = ⟨1R, 0R
76oveq2i 5785 . . . . . 6 (⟨𝑥, 0R⟩ · 1) = (⟨𝑥, 0R⟩ · ⟨1R, 0R⟩)
8 1sr 7559 . . . . . . . 8 1RR
9 mulresr 7646 . . . . . . . 8 ((𝑥R ∧ 1RR) → (⟨𝑥, 0R⟩ · ⟨1R, 0R⟩) = ⟨(𝑥 ·R 1R), 0R⟩)
108, 9mpan2 421 . . . . . . 7 (𝑥R → (⟨𝑥, 0R⟩ · ⟨1R, 0R⟩) = ⟨(𝑥 ·R 1R), 0R⟩)
11 1idsr 7576 . . . . . . . 8 (𝑥R → (𝑥 ·R 1R) = 𝑥)
1211opeq1d 3711 . . . . . . 7 (𝑥R → ⟨(𝑥 ·R 1R), 0R⟩ = ⟨𝑥, 0R⟩)
1310, 12eqtrd 2172 . . . . . 6 (𝑥R → (⟨𝑥, 0R⟩ · ⟨1R, 0R⟩) = ⟨𝑥, 0R⟩)
147, 13syl5eq 2184 . . . . 5 (𝑥R → (⟨𝑥, 0R⟩ · 1) = ⟨𝑥, 0R⟩)
15 opeq2 3706 . . . . . . 7 (𝑦 = 0R → ⟨𝑥, 𝑦⟩ = ⟨𝑥, 0R⟩)
1615oveq1d 5789 . . . . . 6 (𝑦 = 0R → (⟨𝑥, 𝑦⟩ · 1) = (⟨𝑥, 0R⟩ · 1))
1716, 15eqeq12d 2154 . . . . 5 (𝑦 = 0R → ((⟨𝑥, 𝑦⟩ · 1) = ⟨𝑥, 𝑦⟩ ↔ (⟨𝑥, 0R⟩ · 1) = ⟨𝑥, 0R⟩))
1814, 17syl5ibr 155 . . . 4 (𝑦 = 0R → (𝑥R → (⟨𝑥, 𝑦⟩ · 1) = ⟨𝑥, 𝑦⟩))
1918impcom 124 . . 3 ((𝑥R𝑦 = 0R) → (⟨𝑥, 𝑦⟩ · 1) = ⟨𝑥, 𝑦⟩)
205, 19sylan2 284 . 2 ((𝑥R𝑦 ∈ {0R}) → (⟨𝑥, 𝑦⟩ · 1) = ⟨𝑥, 𝑦⟩)
211, 4, 20optocl 4615 1 (𝐴 ∈ ℝ → (𝐴 · 1) = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1331  wcel 1480  {csn 3527  cop 3530  (class class class)co 5774  Rcnr 7105  0Rc0r 7106  1Rc1r 7107   ·R cmr 7110  cr 7619  1c1 7621   · cmul 7625
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-eprel 4211  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-irdg 6267  df-1o 6313  df-2o 6314  df-oadd 6317  df-omul 6318  df-er 6429  df-ec 6431  df-qs 6435  df-ni 7112  df-pli 7113  df-mi 7114  df-lti 7115  df-plpq 7152  df-mpq 7153  df-enq 7155  df-nqqs 7156  df-plqqs 7157  df-mqqs 7158  df-1nqqs 7159  df-rq 7160  df-ltnqqs 7161  df-enq0 7232  df-nq0 7233  df-0nq0 7234  df-plq0 7235  df-mq0 7236  df-inp 7274  df-i1p 7275  df-iplp 7276  df-imp 7277  df-enr 7534  df-nr 7535  df-plr 7536  df-mr 7537  df-0r 7539  df-1r 7540  df-m1r 7541  df-c 7626  df-1 7628  df-r 7630  df-mul 7632
This theorem is referenced by:  rereceu  7697  recriota  7698
  Copyright terms: Public domain W3C validator