ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ax4sp1 Structured version   GIF version

Theorem ax4sp1 1365
Description: A special case of ax-4 1339 without using ax-4 1339 or ax-17 1357. (Contributed by NM, 13-Jan-2011.)
Assertion
Ref Expression
ax4sp1 (y ¬ x = x → ¬ x = x)

Proof of Theorem ax4sp1
StepHypRef Expression
1 equidqe 1363 . 2 ¬ y ¬ x = x
21pm2.21i 556 1 (y ¬ x = x → ¬ x = x)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wal 1272
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 97  ax-ia2 98  ax-ia3 99  ax-in1 527  ax-in2 528  ax-5 1273  ax-gen 1275  ax-ie2 1321  ax-8 1334  ax-i9 1361
This theorem depends on definitions:  df-bi 108  df-tru 1195  df-fal 1196
  Copyright terms: Public domain W3C validator