ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  axcaucvglemcau GIF version

Theorem axcaucvglemcau 7178
Description: Lemma for axcaucvg 7180. The result of mapping to N and R satisfies the Cauchy condition. (Contributed by Jim Kingdon, 9-Jul-2021.)
Hypotheses
Ref Expression
axcaucvg.n 𝑁 = {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}
axcaucvg.f (𝜑𝐹:𝑁⟶ℝ)
axcaucvg.cau (𝜑 → ∀𝑛𝑁𝑘𝑁 (𝑛 < 𝑘 → ((𝐹𝑛) < ((𝐹𝑘) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)))))
axcaucvg.g 𝐺 = (𝑗N ↦ (𝑧R (𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑗, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑗, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) = ⟨𝑧, 0R⟩))
Assertion
Ref Expression
axcaucvglemcau (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐺𝑛) <R ((𝐺𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ∧ (𝐺𝑘) <R ((𝐺𝑛) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))))
Distinct variable groups:   𝑘,𝐹,𝑛,𝑧,𝑗   𝑘,𝑁,𝑛   𝑧,𝐺   𝑘,𝑙,𝑟,𝑢,𝑛   𝑗,𝑙,𝑢,𝑧   𝜑,𝑗,𝑘,𝑛   𝑦,𝑙,𝑢   𝑥,𝑦   𝑗,𝑛,𝑧,𝑘
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑢,𝑟,𝑙)   𝐹(𝑥,𝑦,𝑢,𝑟,𝑙)   𝐺(𝑥,𝑦,𝑢,𝑗,𝑘,𝑛,𝑟,𝑙)   𝑁(𝑥,𝑦,𝑧,𝑢,𝑗,𝑟,𝑙)

Proof of Theorem axcaucvglemcau
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltrenn 7137 . . . . . . . . . 10 (𝑛 <N 𝑘 → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ < ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩)
21adantl 271 . . . . . . . . 9 ((((𝜑𝑛N) ∧ 𝑘N) ∧ 𝑛 <N 𝑘) → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ < ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩)
3 pitonn 7130 . . . . . . . . . . . 12 (𝑘N → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)})
4 axcaucvg.n . . . . . . . . . . . 12 𝑁 = {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}
53, 4syl6eleqr 2176 . . . . . . . . . . 11 (𝑘N → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑁)
65ad2antlr 473 . . . . . . . . . 10 ((((𝜑𝑛N) ∧ 𝑘N) ∧ 𝑛 <N 𝑘) → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑁)
7 pitonn 7130 . . . . . . . . . . . . 13 (𝑛N → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)})
87, 4syl6eleqr 2176 . . . . . . . . . . . 12 (𝑛N → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑁)
98ad3antlr 477 . . . . . . . . . . 11 ((((𝜑𝑛N) ∧ 𝑘N) ∧ 𝑛 <N 𝑘) → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑁)
10 axcaucvg.cau . . . . . . . . . . . . 13 (𝜑 → ∀𝑛𝑁𝑘𝑁 (𝑛 < 𝑘 → ((𝐹𝑛) < ((𝐹𝑘) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)))))
11 breq1 3808 . . . . . . . . . . . . . . 15 (𝑛 = 𝑎 → (𝑛 < 𝑘𝑎 < 𝑘))
12 fveq2 5229 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑎 → (𝐹𝑛) = (𝐹𝑎))
13 oveq1 5570 . . . . . . . . . . . . . . . . . . . 20 (𝑛 = 𝑎 → (𝑛 · 𝑟) = (𝑎 · 𝑟))
1413eqeq1d 2091 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 𝑎 → ((𝑛 · 𝑟) = 1 ↔ (𝑎 · 𝑟) = 1))
1514riotabidv 5521 . . . . . . . . . . . . . . . . . 18 (𝑛 = 𝑎 → (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1) = (𝑟 ∈ ℝ (𝑎 · 𝑟) = 1))
1615oveq2d 5579 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑎 → ((𝐹𝑘) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)) = ((𝐹𝑘) + (𝑟 ∈ ℝ (𝑎 · 𝑟) = 1)))
1712, 16breq12d 3818 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑎 → ((𝐹𝑛) < ((𝐹𝑘) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)) ↔ (𝐹𝑎) < ((𝐹𝑘) + (𝑟 ∈ ℝ (𝑎 · 𝑟) = 1))))
1812, 15oveq12d 5581 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑎 → ((𝐹𝑛) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)) = ((𝐹𝑎) + (𝑟 ∈ ℝ (𝑎 · 𝑟) = 1)))
1918breq2d 3817 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑎 → ((𝐹𝑘) < ((𝐹𝑛) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)) ↔ (𝐹𝑘) < ((𝐹𝑎) + (𝑟 ∈ ℝ (𝑎 · 𝑟) = 1))))
2017, 19anbi12d 457 . . . . . . . . . . . . . . 15 (𝑛 = 𝑎 → (((𝐹𝑛) < ((𝐹𝑘) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1))) ↔ ((𝐹𝑎) < ((𝐹𝑘) + (𝑟 ∈ ℝ (𝑎 · 𝑟) = 1)) ∧ (𝐹𝑘) < ((𝐹𝑎) + (𝑟 ∈ ℝ (𝑎 · 𝑟) = 1)))))
2111, 20imbi12d 232 . . . . . . . . . . . . . 14 (𝑛 = 𝑎 → ((𝑛 < 𝑘 → ((𝐹𝑛) < ((𝐹𝑘) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)))) ↔ (𝑎 < 𝑘 → ((𝐹𝑎) < ((𝐹𝑘) + (𝑟 ∈ ℝ (𝑎 · 𝑟) = 1)) ∧ (𝐹𝑘) < ((𝐹𝑎) + (𝑟 ∈ ℝ (𝑎 · 𝑟) = 1))))))
22 breq2 3809 . . . . . . . . . . . . . . 15 (𝑘 = 𝑏 → (𝑎 < 𝑘𝑎 < 𝑏))
23 fveq2 5229 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑏 → (𝐹𝑘) = (𝐹𝑏))
2423oveq1d 5578 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑏 → ((𝐹𝑘) + (𝑟 ∈ ℝ (𝑎 · 𝑟) = 1)) = ((𝐹𝑏) + (𝑟 ∈ ℝ (𝑎 · 𝑟) = 1)))
2524breq2d 3817 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑏 → ((𝐹𝑎) < ((𝐹𝑘) + (𝑟 ∈ ℝ (𝑎 · 𝑟) = 1)) ↔ (𝐹𝑎) < ((𝐹𝑏) + (𝑟 ∈ ℝ (𝑎 · 𝑟) = 1))))
2623breq1d 3815 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑏 → ((𝐹𝑘) < ((𝐹𝑎) + (𝑟 ∈ ℝ (𝑎 · 𝑟) = 1)) ↔ (𝐹𝑏) < ((𝐹𝑎) + (𝑟 ∈ ℝ (𝑎 · 𝑟) = 1))))
2725, 26anbi12d 457 . . . . . . . . . . . . . . 15 (𝑘 = 𝑏 → (((𝐹𝑎) < ((𝐹𝑘) + (𝑟 ∈ ℝ (𝑎 · 𝑟) = 1)) ∧ (𝐹𝑘) < ((𝐹𝑎) + (𝑟 ∈ ℝ (𝑎 · 𝑟) = 1))) ↔ ((𝐹𝑎) < ((𝐹𝑏) + (𝑟 ∈ ℝ (𝑎 · 𝑟) = 1)) ∧ (𝐹𝑏) < ((𝐹𝑎) + (𝑟 ∈ ℝ (𝑎 · 𝑟) = 1)))))
2822, 27imbi12d 232 . . . . . . . . . . . . . 14 (𝑘 = 𝑏 → ((𝑎 < 𝑘 → ((𝐹𝑎) < ((𝐹𝑘) + (𝑟 ∈ ℝ (𝑎 · 𝑟) = 1)) ∧ (𝐹𝑘) < ((𝐹𝑎) + (𝑟 ∈ ℝ (𝑎 · 𝑟) = 1)))) ↔ (𝑎 < 𝑏 → ((𝐹𝑎) < ((𝐹𝑏) + (𝑟 ∈ ℝ (𝑎 · 𝑟) = 1)) ∧ (𝐹𝑏) < ((𝐹𝑎) + (𝑟 ∈ ℝ (𝑎 · 𝑟) = 1))))))
2921, 28cbvral2v 2590 . . . . . . . . . . . . 13 (∀𝑛𝑁𝑘𝑁 (𝑛 < 𝑘 → ((𝐹𝑛) < ((𝐹𝑘) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)))) ↔ ∀𝑎𝑁𝑏𝑁 (𝑎 < 𝑏 → ((𝐹𝑎) < ((𝐹𝑏) + (𝑟 ∈ ℝ (𝑎 · 𝑟) = 1)) ∧ (𝐹𝑏) < ((𝐹𝑎) + (𝑟 ∈ ℝ (𝑎 · 𝑟) = 1)))))
3010, 29sylib 120 . . . . . . . . . . . 12 (𝜑 → ∀𝑎𝑁𝑏𝑁 (𝑎 < 𝑏 → ((𝐹𝑎) < ((𝐹𝑏) + (𝑟 ∈ ℝ (𝑎 · 𝑟) = 1)) ∧ (𝐹𝑏) < ((𝐹𝑎) + (𝑟 ∈ ℝ (𝑎 · 𝑟) = 1)))))
3130ad3antrrr 476 . . . . . . . . . . 11 ((((𝜑𝑛N) ∧ 𝑘N) ∧ 𝑛 <N 𝑘) → ∀𝑎𝑁𝑏𝑁 (𝑎 < 𝑏 → ((𝐹𝑎) < ((𝐹𝑏) + (𝑟 ∈ ℝ (𝑎 · 𝑟) = 1)) ∧ (𝐹𝑏) < ((𝐹𝑎) + (𝑟 ∈ ℝ (𝑎 · 𝑟) = 1)))))
32 breq1 3808 . . . . . . . . . . . . . 14 (𝑎 = ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ → (𝑎 < 𝑏 ↔ ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ < 𝑏))
33 fveq2 5229 . . . . . . . . . . . . . . . 16 (𝑎 = ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ → (𝐹𝑎) = (𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩))
34 oveq1 5570 . . . . . . . . . . . . . . . . . . 19 (𝑎 = ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ → (𝑎 · 𝑟) = (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · 𝑟))
3534eqeq1d 2091 . . . . . . . . . . . . . . . . . 18 (𝑎 = ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ → ((𝑎 · 𝑟) = 1 ↔ (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · 𝑟) = 1))
3635riotabidv 5521 . . . . . . . . . . . . . . . . 17 (𝑎 = ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ → (𝑟 ∈ ℝ (𝑎 · 𝑟) = 1) = (𝑟 ∈ ℝ (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · 𝑟) = 1))
3736oveq2d 5579 . . . . . . . . . . . . . . . 16 (𝑎 = ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ → ((𝐹𝑏) + (𝑟 ∈ ℝ (𝑎 · 𝑟) = 1)) = ((𝐹𝑏) + (𝑟 ∈ ℝ (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · 𝑟) = 1)))
3833, 37breq12d 3818 . . . . . . . . . . . . . . 15 (𝑎 = ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ → ((𝐹𝑎) < ((𝐹𝑏) + (𝑟 ∈ ℝ (𝑎 · 𝑟) = 1)) ↔ (𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) < ((𝐹𝑏) + (𝑟 ∈ ℝ (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · 𝑟) = 1))))
3933, 36oveq12d 5581 . . . . . . . . . . . . . . . 16 (𝑎 = ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ → ((𝐹𝑎) + (𝑟 ∈ ℝ (𝑎 · 𝑟) = 1)) = ((𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) + (𝑟 ∈ ℝ (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · 𝑟) = 1)))
4039breq2d 3817 . . . . . . . . . . . . . . 15 (𝑎 = ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ → ((𝐹𝑏) < ((𝐹𝑎) + (𝑟 ∈ ℝ (𝑎 · 𝑟) = 1)) ↔ (𝐹𝑏) < ((𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) + (𝑟 ∈ ℝ (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · 𝑟) = 1))))
4138, 40anbi12d 457 . . . . . . . . . . . . . 14 (𝑎 = ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ → (((𝐹𝑎) < ((𝐹𝑏) + (𝑟 ∈ ℝ (𝑎 · 𝑟) = 1)) ∧ (𝐹𝑏) < ((𝐹𝑎) + (𝑟 ∈ ℝ (𝑎 · 𝑟) = 1))) ↔ ((𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) < ((𝐹𝑏) + (𝑟 ∈ ℝ (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · 𝑟) = 1)) ∧ (𝐹𝑏) < ((𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) + (𝑟 ∈ ℝ (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · 𝑟) = 1)))))
4232, 41imbi12d 232 . . . . . . . . . . . . 13 (𝑎 = ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ → ((𝑎 < 𝑏 → ((𝐹𝑎) < ((𝐹𝑏) + (𝑟 ∈ ℝ (𝑎 · 𝑟) = 1)) ∧ (𝐹𝑏) < ((𝐹𝑎) + (𝑟 ∈ ℝ (𝑎 · 𝑟) = 1)))) ↔ (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ < 𝑏 → ((𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) < ((𝐹𝑏) + (𝑟 ∈ ℝ (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · 𝑟) = 1)) ∧ (𝐹𝑏) < ((𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) + (𝑟 ∈ ℝ (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · 𝑟) = 1))))))
4342ralbidv 2373 . . . . . . . . . . . 12 (𝑎 = ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ → (∀𝑏𝑁 (𝑎 < 𝑏 → ((𝐹𝑎) < ((𝐹𝑏) + (𝑟 ∈ ℝ (𝑎 · 𝑟) = 1)) ∧ (𝐹𝑏) < ((𝐹𝑎) + (𝑟 ∈ ℝ (𝑎 · 𝑟) = 1)))) ↔ ∀𝑏𝑁 (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ < 𝑏 → ((𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) < ((𝐹𝑏) + (𝑟 ∈ ℝ (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · 𝑟) = 1)) ∧ (𝐹𝑏) < ((𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) + (𝑟 ∈ ℝ (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · 𝑟) = 1))))))
4443rspcva 2708 . . . . . . . . . . 11 ((⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑁 ∧ ∀𝑎𝑁𝑏𝑁 (𝑎 < 𝑏 → ((𝐹𝑎) < ((𝐹𝑏) + (𝑟 ∈ ℝ (𝑎 · 𝑟) = 1)) ∧ (𝐹𝑏) < ((𝐹𝑎) + (𝑟 ∈ ℝ (𝑎 · 𝑟) = 1))))) → ∀𝑏𝑁 (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ < 𝑏 → ((𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) < ((𝐹𝑏) + (𝑟 ∈ ℝ (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · 𝑟) = 1)) ∧ (𝐹𝑏) < ((𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) + (𝑟 ∈ ℝ (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · 𝑟) = 1)))))
459, 31, 44syl2anc 403 . . . . . . . . . 10 ((((𝜑𝑛N) ∧ 𝑘N) ∧ 𝑛 <N 𝑘) → ∀𝑏𝑁 (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ < 𝑏 → ((𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) < ((𝐹𝑏) + (𝑟 ∈ ℝ (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · 𝑟) = 1)) ∧ (𝐹𝑏) < ((𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) + (𝑟 ∈ ℝ (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · 𝑟) = 1)))))
46 breq2 3809 . . . . . . . . . . . 12 (𝑏 = ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ → (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ < 𝑏 ↔ ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ < ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩))
47 fveq2 5229 . . . . . . . . . . . . . . 15 (𝑏 = ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ → (𝐹𝑏) = (𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩))
4847oveq1d 5578 . . . . . . . . . . . . . 14 (𝑏 = ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ → ((𝐹𝑏) + (𝑟 ∈ ℝ (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · 𝑟) = 1)) = ((𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) + (𝑟 ∈ ℝ (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · 𝑟) = 1)))
4948breq2d 3817 . . . . . . . . . . . . 13 (𝑏 = ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ → ((𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) < ((𝐹𝑏) + (𝑟 ∈ ℝ (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · 𝑟) = 1)) ↔ (𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) < ((𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) + (𝑟 ∈ ℝ (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · 𝑟) = 1))))
5047breq1d 3815 . . . . . . . . . . . . 13 (𝑏 = ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ → ((𝐹𝑏) < ((𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) + (𝑟 ∈ ℝ (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · 𝑟) = 1)) ↔ (𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) < ((𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) + (𝑟 ∈ ℝ (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · 𝑟) = 1))))
5149, 50anbi12d 457 . . . . . . . . . . . 12 (𝑏 = ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ → (((𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) < ((𝐹𝑏) + (𝑟 ∈ ℝ (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · 𝑟) = 1)) ∧ (𝐹𝑏) < ((𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) + (𝑟 ∈ ℝ (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · 𝑟) = 1))) ↔ ((𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) < ((𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) + (𝑟 ∈ ℝ (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · 𝑟) = 1)) ∧ (𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) < ((𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) + (𝑟 ∈ ℝ (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · 𝑟) = 1)))))
5246, 51imbi12d 232 . . . . . . . . . . 11 (𝑏 = ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ → ((⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ < 𝑏 → ((𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) < ((𝐹𝑏) + (𝑟 ∈ ℝ (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · 𝑟) = 1)) ∧ (𝐹𝑏) < ((𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) + (𝑟 ∈ ℝ (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · 𝑟) = 1)))) ↔ (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ < ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ → ((𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) < ((𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) + (𝑟 ∈ ℝ (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · 𝑟) = 1)) ∧ (𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) < ((𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) + (𝑟 ∈ ℝ (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · 𝑟) = 1))))))
5352rspcva 2708 . . . . . . . . . 10 ((⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑁 ∧ ∀𝑏𝑁 (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ < 𝑏 → ((𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) < ((𝐹𝑏) + (𝑟 ∈ ℝ (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · 𝑟) = 1)) ∧ (𝐹𝑏) < ((𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) + (𝑟 ∈ ℝ (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · 𝑟) = 1))))) → (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ < ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ → ((𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) < ((𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) + (𝑟 ∈ ℝ (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · 𝑟) = 1)) ∧ (𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) < ((𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) + (𝑟 ∈ ℝ (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · 𝑟) = 1)))))
546, 45, 53syl2anc 403 . . . . . . . . 9 ((((𝜑𝑛N) ∧ 𝑘N) ∧ 𝑛 <N 𝑘) → (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ < ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ → ((𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) < ((𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) + (𝑟 ∈ ℝ (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · 𝑟) = 1)) ∧ (𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) < ((𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) + (𝑟 ∈ ℝ (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · 𝑟) = 1)))))
552, 54mpd 13 . . . . . . . 8 ((((𝜑𝑛N) ∧ 𝑘N) ∧ 𝑛 <N 𝑘) → ((𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) < ((𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) + (𝑟 ∈ ℝ (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · 𝑟) = 1)) ∧ (𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) < ((𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) + (𝑟 ∈ ℝ (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · 𝑟) = 1))))
5655simpld 110 . . . . . . 7 ((((𝜑𝑛N) ∧ 𝑘N) ∧ 𝑛 <N 𝑘) → (𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) < ((𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) + (𝑟 ∈ ℝ (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · 𝑟) = 1)))
57 axcaucvg.f . . . . . . . . 9 (𝜑𝐹:𝑁⟶ℝ)
58 axcaucvg.g . . . . . . . . 9 𝐺 = (𝑗N ↦ (𝑧R (𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑗, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑗, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) = ⟨𝑧, 0R⟩))
594, 57, 10, 58axcaucvglemval 7177 . . . . . . . 8 ((𝜑𝑛N) → (𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) = ⟨(𝐺𝑛), 0R⟩)
6059ad2antrr 472 . . . . . . 7 ((((𝜑𝑛N) ∧ 𝑘N) ∧ 𝑛 <N 𝑘) → (𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) = ⟨(𝐺𝑛), 0R⟩)
614, 57, 10, 58axcaucvglemval 7177 . . . . . . . . . . 11 ((𝜑𝑘N) → (𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) = ⟨(𝐺𝑘), 0R⟩)
6261adantlr 461 . . . . . . . . . 10 (((𝜑𝑛N) ∧ 𝑘N) → (𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) = ⟨(𝐺𝑘), 0R⟩)
6362adantr 270 . . . . . . . . 9 ((((𝜑𝑛N) ∧ 𝑘N) ∧ 𝑛 <N 𝑘) → (𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) = ⟨(𝐺𝑘), 0R⟩)
64 recriota 7170 . . . . . . . . . 10 (𝑛N → (𝑟 ∈ ℝ (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · 𝑟) = 1) = ⟨[⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩)
6564ad3antlr 477 . . . . . . . . 9 ((((𝜑𝑛N) ∧ 𝑘N) ∧ 𝑛 <N 𝑘) → (𝑟 ∈ ℝ (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · 𝑟) = 1) = ⟨[⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩)
6663, 65oveq12d 5581 . . . . . . . 8 ((((𝜑𝑛N) ∧ 𝑘N) ∧ 𝑛 <N 𝑘) → ((𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) + (𝑟 ∈ ℝ (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · 𝑟) = 1)) = (⟨(𝐺𝑘), 0R⟩ + ⟨[⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩))
674, 57, 10, 58axcaucvglemf 7176 . . . . . . . . . . 11 (𝜑𝐺:NR)
6867ad3antrrr 476 . . . . . . . . . 10 ((((𝜑𝑛N) ∧ 𝑘N) ∧ 𝑛 <N 𝑘) → 𝐺:NR)
69 simplr 497 . . . . . . . . . 10 ((((𝜑𝑛N) ∧ 𝑘N) ∧ 𝑛 <N 𝑘) → 𝑘N)
7068, 69ffvelrnd 5355 . . . . . . . . 9 ((((𝜑𝑛N) ∧ 𝑘N) ∧ 𝑛 <N 𝑘) → (𝐺𝑘) ∈ R)
71 recnnpr 6852 . . . . . . . . . . 11 (𝑛N → ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ ∈ P)
72 prsrcl 7074 . . . . . . . . . . 11 (⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ ∈ P → [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~RR)
7371, 72syl 14 . . . . . . . . . 10 (𝑛N → [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~RR)
7473ad3antlr 477 . . . . . . . . 9 ((((𝜑𝑛N) ∧ 𝑘N) ∧ 𝑛 <N 𝑘) → [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~RR)
75 addresr 7119 . . . . . . . . 9 (((𝐺𝑘) ∈ R ∧ [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~RR) → (⟨(𝐺𝑘), 0R⟩ + ⟨[⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) = ⟨((𝐺𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ), 0R⟩)
7670, 74, 75syl2anc 403 . . . . . . . 8 ((((𝜑𝑛N) ∧ 𝑘N) ∧ 𝑛 <N 𝑘) → (⟨(𝐺𝑘), 0R⟩ + ⟨[⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) = ⟨((𝐺𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ), 0R⟩)
7766, 76eqtrd 2115 . . . . . . 7 ((((𝜑𝑛N) ∧ 𝑘N) ∧ 𝑛 <N 𝑘) → ((𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) + (𝑟 ∈ ℝ (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · 𝑟) = 1)) = ⟨((𝐺𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ), 0R⟩)
7856, 60, 773brtr3d 3834 . . . . . 6 ((((𝜑𝑛N) ∧ 𝑘N) ∧ 𝑛 <N 𝑘) → ⟨(𝐺𝑛), 0R⟩ < ⟨((𝐺𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ), 0R⟩)
79 ltresr 7121 . . . . . 6 (⟨(𝐺𝑛), 0R⟩ < ⟨((𝐺𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ), 0R⟩ ↔ (𝐺𝑛) <R ((𝐺𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))
8078, 79sylib 120 . . . . 5 ((((𝜑𝑛N) ∧ 𝑘N) ∧ 𝑛 <N 𝑘) → (𝐺𝑛) <R ((𝐺𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))
8155simprd 112 . . . . . . 7 ((((𝜑𝑛N) ∧ 𝑘N) ∧ 𝑛 <N 𝑘) → (𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) < ((𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) + (𝑟 ∈ ℝ (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · 𝑟) = 1)))
8260, 65oveq12d 5581 . . . . . . . 8 ((((𝜑𝑛N) ∧ 𝑘N) ∧ 𝑛 <N 𝑘) → ((𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) + (𝑟 ∈ ℝ (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · 𝑟) = 1)) = (⟨(𝐺𝑛), 0R⟩ + ⟨[⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩))
83 simpllr 501 . . . . . . . . . 10 ((((𝜑𝑛N) ∧ 𝑘N) ∧ 𝑛 <N 𝑘) → 𝑛N)
8468, 83ffvelrnd 5355 . . . . . . . . 9 ((((𝜑𝑛N) ∧ 𝑘N) ∧ 𝑛 <N 𝑘) → (𝐺𝑛) ∈ R)
85 addresr 7119 . . . . . . . . 9 (((𝐺𝑛) ∈ R ∧ [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~RR) → (⟨(𝐺𝑛), 0R⟩ + ⟨[⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) = ⟨((𝐺𝑛) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ), 0R⟩)
8684, 74, 85syl2anc 403 . . . . . . . 8 ((((𝜑𝑛N) ∧ 𝑘N) ∧ 𝑛 <N 𝑘) → (⟨(𝐺𝑛), 0R⟩ + ⟨[⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) = ⟨((𝐺𝑛) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ), 0R⟩)
8782, 86eqtrd 2115 . . . . . . 7 ((((𝜑𝑛N) ∧ 𝑘N) ∧ 𝑛 <N 𝑘) → ((𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) + (𝑟 ∈ ℝ (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · 𝑟) = 1)) = ⟨((𝐺𝑛) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ), 0R⟩)
8881, 63, 873brtr3d 3834 . . . . . 6 ((((𝜑𝑛N) ∧ 𝑘N) ∧ 𝑛 <N 𝑘) → ⟨(𝐺𝑘), 0R⟩ < ⟨((𝐺𝑛) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ), 0R⟩)
89 ltresr 7121 . . . . . 6 (⟨(𝐺𝑘), 0R⟩ < ⟨((𝐺𝑛) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ), 0R⟩ ↔ (𝐺𝑘) <R ((𝐺𝑛) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))
9088, 89sylib 120 . . . . 5 ((((𝜑𝑛N) ∧ 𝑘N) ∧ 𝑛 <N 𝑘) → (𝐺𝑘) <R ((𝐺𝑛) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))
9180, 90jca 300 . . . 4 ((((𝜑𝑛N) ∧ 𝑘N) ∧ 𝑛 <N 𝑘) → ((𝐺𝑛) <R ((𝐺𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ∧ (𝐺𝑘) <R ((𝐺𝑛) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R )))
9291ex 113 . . 3 (((𝜑𝑛N) ∧ 𝑘N) → (𝑛 <N 𝑘 → ((𝐺𝑛) <R ((𝐺𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ∧ (𝐺𝑘) <R ((𝐺𝑛) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))))
9392ralrimiva 2439 . 2 ((𝜑𝑛N) → ∀𝑘N (𝑛 <N 𝑘 → ((𝐺𝑛) <R ((𝐺𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ∧ (𝐺𝑘) <R ((𝐺𝑛) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))))
9493ralrimiva 2439 1 (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐺𝑛) <R ((𝐺𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ∧ (𝐺𝑘) <R ((𝐺𝑛) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102   = wceq 1285  wcel 1434  {cab 2069  wral 2353  cop 3419   cint 3656   class class class wbr 3805  cmpt 3859  wf 4948  cfv 4952  crio 5518  (class class class)co 5563  1𝑜c1o 6078  [cec 6191  Ncnpi 6576   <N clti 6579   ~Q ceq 6583  *Qcrq 6588   <Q cltq 6589  Pcnp 6595  1Pc1p 6596   +P cpp 6597   ~R cer 6600  Rcnr 6601  0Rc0r 6602   +R cplr 6605   <R cltr 6607  cr 7094  1c1 7096   + caddc 7098   < cltrr 7099   · cmul 7100
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-coll 3913  ax-sep 3916  ax-nul 3924  ax-pow 3968  ax-pr 3992  ax-un 4216  ax-setind 4308  ax-iinf 4357
This theorem depends on definitions:  df-bi 115  df-dc 777  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-ral 2358  df-rex 2359  df-reu 2360  df-rmo 2361  df-rab 2362  df-v 2612  df-sbc 2825  df-csb 2918  df-dif 2984  df-un 2986  df-in 2988  df-ss 2995  df-nul 3268  df-pw 3402  df-sn 3422  df-pr 3423  df-op 3425  df-uni 3622  df-int 3657  df-iun 3700  df-br 3806  df-opab 3860  df-mpt 3861  df-tr 3896  df-eprel 4072  df-id 4076  df-po 4079  df-iso 4080  df-iord 4149  df-on 4151  df-suc 4154  df-iom 4360  df-xp 4397  df-rel 4398  df-cnv 4399  df-co 4400  df-dm 4401  df-rn 4402  df-res 4403  df-ima 4404  df-iota 4917  df-fun 4954  df-fn 4955  df-f 4956  df-f1 4957  df-fo 4958  df-f1o 4959  df-fv 4960  df-riota 5519  df-ov 5566  df-oprab 5567  df-mpt2 5568  df-1st 5818  df-2nd 5819  df-recs 5974  df-irdg 6039  df-1o 6085  df-2o 6086  df-oadd 6089  df-omul 6090  df-er 6193  df-ec 6195  df-qs 6199  df-ni 6608  df-pli 6609  df-mi 6610  df-lti 6611  df-plpq 6648  df-mpq 6649  df-enq 6651  df-nqqs 6652  df-plqqs 6653  df-mqqs 6654  df-1nqqs 6655  df-rq 6656  df-ltnqqs 6657  df-enq0 6728  df-nq0 6729  df-0nq0 6730  df-plq0 6731  df-mq0 6732  df-inp 6770  df-i1p 6771  df-iplp 6772  df-imp 6773  df-iltp 6774  df-enr 7017  df-nr 7018  df-plr 7019  df-mr 7020  df-ltr 7021  df-0r 7022  df-1r 7023  df-m1r 7024  df-c 7101  df-0 7102  df-1 7103  df-r 7105  df-add 7106  df-mul 7107  df-lt 7108
This theorem is referenced by:  axcaucvglemres  7179
  Copyright terms: Public domain W3C validator