ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  axcaucvglemcau GIF version

Theorem axcaucvglemcau 7699
Description: Lemma for axcaucvg 7701. The result of mapping to N and R satisfies the Cauchy condition. (Contributed by Jim Kingdon, 9-Jul-2021.)
Hypotheses
Ref Expression
axcaucvg.n 𝑁 = {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}
axcaucvg.f (𝜑𝐹:𝑁⟶ℝ)
axcaucvg.cau (𝜑 → ∀𝑛𝑁𝑘𝑁 (𝑛 < 𝑘 → ((𝐹𝑛) < ((𝐹𝑘) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)))))
axcaucvg.g 𝐺 = (𝑗N ↦ (𝑧R (𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑗, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑗, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) = ⟨𝑧, 0R⟩))
Assertion
Ref Expression
axcaucvglemcau (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐺𝑛) <R ((𝐺𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ∧ (𝐺𝑘) <R ((𝐺𝑛) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))))
Distinct variable groups:   𝑘,𝐹,𝑛,𝑧,𝑗   𝑘,𝑁,𝑛   𝑧,𝐺   𝑘,𝑙,𝑟,𝑢,𝑛   𝑗,𝑙,𝑢,𝑧   𝜑,𝑗,𝑘,𝑛   𝑦,𝑙,𝑢   𝑥,𝑦   𝑗,𝑛,𝑧,𝑘
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑢,𝑟,𝑙)   𝐹(𝑥,𝑦,𝑢,𝑟,𝑙)   𝐺(𝑥,𝑦,𝑢,𝑗,𝑘,𝑛,𝑟,𝑙)   𝑁(𝑥,𝑦,𝑧,𝑢,𝑗,𝑟,𝑙)

Proof of Theorem axcaucvglemcau
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltrenn 7656 . . . . . . . . . 10 (𝑛 <N 𝑘 → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ < ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩)
21adantl 275 . . . . . . . . 9 ((((𝜑𝑛N) ∧ 𝑘N) ∧ 𝑛 <N 𝑘) → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ < ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩)
3 breq2 3928 . . . . . . . . . . 11 (𝑏 = ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ → (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ < 𝑏 ↔ ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ < ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩))
4 fveq2 5414 . . . . . . . . . . . . . 14 (𝑏 = ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ → (𝐹𝑏) = (𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩))
54oveq1d 5782 . . . . . . . . . . . . 13 (𝑏 = ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ → ((𝐹𝑏) + (𝑟 ∈ ℝ (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · 𝑟) = 1)) = ((𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) + (𝑟 ∈ ℝ (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · 𝑟) = 1)))
65breq2d 3936 . . . . . . . . . . . 12 (𝑏 = ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ → ((𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) < ((𝐹𝑏) + (𝑟 ∈ ℝ (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · 𝑟) = 1)) ↔ (𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) < ((𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) + (𝑟 ∈ ℝ (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · 𝑟) = 1))))
74breq1d 3934 . . . . . . . . . . . 12 (𝑏 = ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ → ((𝐹𝑏) < ((𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) + (𝑟 ∈ ℝ (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · 𝑟) = 1)) ↔ (𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) < ((𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) + (𝑟 ∈ ℝ (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · 𝑟) = 1))))
86, 7anbi12d 464 . . . . . . . . . . 11 (𝑏 = ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ → (((𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) < ((𝐹𝑏) + (𝑟 ∈ ℝ (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · 𝑟) = 1)) ∧ (𝐹𝑏) < ((𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) + (𝑟 ∈ ℝ (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · 𝑟) = 1))) ↔ ((𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) < ((𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) + (𝑟 ∈ ℝ (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · 𝑟) = 1)) ∧ (𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) < ((𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) + (𝑟 ∈ ℝ (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · 𝑟) = 1)))))
93, 8imbi12d 233 . . . . . . . . . 10 (𝑏 = ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ → ((⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ < 𝑏 → ((𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) < ((𝐹𝑏) + (𝑟 ∈ ℝ (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · 𝑟) = 1)) ∧ (𝐹𝑏) < ((𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) + (𝑟 ∈ ℝ (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · 𝑟) = 1)))) ↔ (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ < ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ → ((𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) < ((𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) + (𝑟 ∈ ℝ (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · 𝑟) = 1)) ∧ (𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) < ((𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) + (𝑟 ∈ ℝ (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · 𝑟) = 1))))))
10 breq1 3927 . . . . . . . . . . . . 13 (𝑎 = ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ → (𝑎 < 𝑏 ↔ ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ < 𝑏))
11 fveq2 5414 . . . . . . . . . . . . . . 15 (𝑎 = ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ → (𝐹𝑎) = (𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩))
12 oveq1 5774 . . . . . . . . . . . . . . . . . 18 (𝑎 = ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ → (𝑎 · 𝑟) = (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · 𝑟))
1312eqeq1d 2146 . . . . . . . . . . . . . . . . 17 (𝑎 = ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ → ((𝑎 · 𝑟) = 1 ↔ (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · 𝑟) = 1))
1413riotabidv 5725 . . . . . . . . . . . . . . . 16 (𝑎 = ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ → (𝑟 ∈ ℝ (𝑎 · 𝑟) = 1) = (𝑟 ∈ ℝ (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · 𝑟) = 1))
1514oveq2d 5783 . . . . . . . . . . . . . . 15 (𝑎 = ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ → ((𝐹𝑏) + (𝑟 ∈ ℝ (𝑎 · 𝑟) = 1)) = ((𝐹𝑏) + (𝑟 ∈ ℝ (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · 𝑟) = 1)))
1611, 15breq12d 3937 . . . . . . . . . . . . . 14 (𝑎 = ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ → ((𝐹𝑎) < ((𝐹𝑏) + (𝑟 ∈ ℝ (𝑎 · 𝑟) = 1)) ↔ (𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) < ((𝐹𝑏) + (𝑟 ∈ ℝ (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · 𝑟) = 1))))
1711, 14oveq12d 5785 . . . . . . . . . . . . . . 15 (𝑎 = ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ → ((𝐹𝑎) + (𝑟 ∈ ℝ (𝑎 · 𝑟) = 1)) = ((𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) + (𝑟 ∈ ℝ (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · 𝑟) = 1)))
1817breq2d 3936 . . . . . . . . . . . . . 14 (𝑎 = ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ → ((𝐹𝑏) < ((𝐹𝑎) + (𝑟 ∈ ℝ (𝑎 · 𝑟) = 1)) ↔ (𝐹𝑏) < ((𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) + (𝑟 ∈ ℝ (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · 𝑟) = 1))))
1916, 18anbi12d 464 . . . . . . . . . . . . 13 (𝑎 = ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ → (((𝐹𝑎) < ((𝐹𝑏) + (𝑟 ∈ ℝ (𝑎 · 𝑟) = 1)) ∧ (𝐹𝑏) < ((𝐹𝑎) + (𝑟 ∈ ℝ (𝑎 · 𝑟) = 1))) ↔ ((𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) < ((𝐹𝑏) + (𝑟 ∈ ℝ (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · 𝑟) = 1)) ∧ (𝐹𝑏) < ((𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) + (𝑟 ∈ ℝ (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · 𝑟) = 1)))))
2010, 19imbi12d 233 . . . . . . . . . . . 12 (𝑎 = ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ → ((𝑎 < 𝑏 → ((𝐹𝑎) < ((𝐹𝑏) + (𝑟 ∈ ℝ (𝑎 · 𝑟) = 1)) ∧ (𝐹𝑏) < ((𝐹𝑎) + (𝑟 ∈ ℝ (𝑎 · 𝑟) = 1)))) ↔ (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ < 𝑏 → ((𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) < ((𝐹𝑏) + (𝑟 ∈ ℝ (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · 𝑟) = 1)) ∧ (𝐹𝑏) < ((𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) + (𝑟 ∈ ℝ (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · 𝑟) = 1))))))
2120ralbidv 2435 . . . . . . . . . . 11 (𝑎 = ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ → (∀𝑏𝑁 (𝑎 < 𝑏 → ((𝐹𝑎) < ((𝐹𝑏) + (𝑟 ∈ ℝ (𝑎 · 𝑟) = 1)) ∧ (𝐹𝑏) < ((𝐹𝑎) + (𝑟 ∈ ℝ (𝑎 · 𝑟) = 1)))) ↔ ∀𝑏𝑁 (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ < 𝑏 → ((𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) < ((𝐹𝑏) + (𝑟 ∈ ℝ (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · 𝑟) = 1)) ∧ (𝐹𝑏) < ((𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) + (𝑟 ∈ ℝ (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · 𝑟) = 1))))))
22 axcaucvg.cau . . . . . . . . . . . . 13 (𝜑 → ∀𝑛𝑁𝑘𝑁 (𝑛 < 𝑘 → ((𝐹𝑛) < ((𝐹𝑘) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)))))
23 breq1 3927 . . . . . . . . . . . . . . 15 (𝑛 = 𝑎 → (𝑛 < 𝑘𝑎 < 𝑘))
24 fveq2 5414 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑎 → (𝐹𝑛) = (𝐹𝑎))
25 oveq1 5774 . . . . . . . . . . . . . . . . . . . 20 (𝑛 = 𝑎 → (𝑛 · 𝑟) = (𝑎 · 𝑟))
2625eqeq1d 2146 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 𝑎 → ((𝑛 · 𝑟) = 1 ↔ (𝑎 · 𝑟) = 1))
2726riotabidv 5725 . . . . . . . . . . . . . . . . . 18 (𝑛 = 𝑎 → (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1) = (𝑟 ∈ ℝ (𝑎 · 𝑟) = 1))
2827oveq2d 5783 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑎 → ((𝐹𝑘) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)) = ((𝐹𝑘) + (𝑟 ∈ ℝ (𝑎 · 𝑟) = 1)))
2924, 28breq12d 3937 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑎 → ((𝐹𝑛) < ((𝐹𝑘) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)) ↔ (𝐹𝑎) < ((𝐹𝑘) + (𝑟 ∈ ℝ (𝑎 · 𝑟) = 1))))
3024, 27oveq12d 5785 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑎 → ((𝐹𝑛) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)) = ((𝐹𝑎) + (𝑟 ∈ ℝ (𝑎 · 𝑟) = 1)))
3130breq2d 3936 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑎 → ((𝐹𝑘) < ((𝐹𝑛) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)) ↔ (𝐹𝑘) < ((𝐹𝑎) + (𝑟 ∈ ℝ (𝑎 · 𝑟) = 1))))
3229, 31anbi12d 464 . . . . . . . . . . . . . . 15 (𝑛 = 𝑎 → (((𝐹𝑛) < ((𝐹𝑘) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1))) ↔ ((𝐹𝑎) < ((𝐹𝑘) + (𝑟 ∈ ℝ (𝑎 · 𝑟) = 1)) ∧ (𝐹𝑘) < ((𝐹𝑎) + (𝑟 ∈ ℝ (𝑎 · 𝑟) = 1)))))
3323, 32imbi12d 233 . . . . . . . . . . . . . 14 (𝑛 = 𝑎 → ((𝑛 < 𝑘 → ((𝐹𝑛) < ((𝐹𝑘) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)))) ↔ (𝑎 < 𝑘 → ((𝐹𝑎) < ((𝐹𝑘) + (𝑟 ∈ ℝ (𝑎 · 𝑟) = 1)) ∧ (𝐹𝑘) < ((𝐹𝑎) + (𝑟 ∈ ℝ (𝑎 · 𝑟) = 1))))))
34 breq2 3928 . . . . . . . . . . . . . . 15 (𝑘 = 𝑏 → (𝑎 < 𝑘𝑎 < 𝑏))
35 fveq2 5414 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑏 → (𝐹𝑘) = (𝐹𝑏))
3635oveq1d 5782 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑏 → ((𝐹𝑘) + (𝑟 ∈ ℝ (𝑎 · 𝑟) = 1)) = ((𝐹𝑏) + (𝑟 ∈ ℝ (𝑎 · 𝑟) = 1)))
3736breq2d 3936 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑏 → ((𝐹𝑎) < ((𝐹𝑘) + (𝑟 ∈ ℝ (𝑎 · 𝑟) = 1)) ↔ (𝐹𝑎) < ((𝐹𝑏) + (𝑟 ∈ ℝ (𝑎 · 𝑟) = 1))))
3835breq1d 3934 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑏 → ((𝐹𝑘) < ((𝐹𝑎) + (𝑟 ∈ ℝ (𝑎 · 𝑟) = 1)) ↔ (𝐹𝑏) < ((𝐹𝑎) + (𝑟 ∈ ℝ (𝑎 · 𝑟) = 1))))
3937, 38anbi12d 464 . . . . . . . . . . . . . . 15 (𝑘 = 𝑏 → (((𝐹𝑎) < ((𝐹𝑘) + (𝑟 ∈ ℝ (𝑎 · 𝑟) = 1)) ∧ (𝐹𝑘) < ((𝐹𝑎) + (𝑟 ∈ ℝ (𝑎 · 𝑟) = 1))) ↔ ((𝐹𝑎) < ((𝐹𝑏) + (𝑟 ∈ ℝ (𝑎 · 𝑟) = 1)) ∧ (𝐹𝑏) < ((𝐹𝑎) + (𝑟 ∈ ℝ (𝑎 · 𝑟) = 1)))))
4034, 39imbi12d 233 . . . . . . . . . . . . . 14 (𝑘 = 𝑏 → ((𝑎 < 𝑘 → ((𝐹𝑎) < ((𝐹𝑘) + (𝑟 ∈ ℝ (𝑎 · 𝑟) = 1)) ∧ (𝐹𝑘) < ((𝐹𝑎) + (𝑟 ∈ ℝ (𝑎 · 𝑟) = 1)))) ↔ (𝑎 < 𝑏 → ((𝐹𝑎) < ((𝐹𝑏) + (𝑟 ∈ ℝ (𝑎 · 𝑟) = 1)) ∧ (𝐹𝑏) < ((𝐹𝑎) + (𝑟 ∈ ℝ (𝑎 · 𝑟) = 1))))))
4133, 40cbvral2v 2660 . . . . . . . . . . . . 13 (∀𝑛𝑁𝑘𝑁 (𝑛 < 𝑘 → ((𝐹𝑛) < ((𝐹𝑘) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)))) ↔ ∀𝑎𝑁𝑏𝑁 (𝑎 < 𝑏 → ((𝐹𝑎) < ((𝐹𝑏) + (𝑟 ∈ ℝ (𝑎 · 𝑟) = 1)) ∧ (𝐹𝑏) < ((𝐹𝑎) + (𝑟 ∈ ℝ (𝑎 · 𝑟) = 1)))))
4222, 41sylib 121 . . . . . . . . . . . 12 (𝜑 → ∀𝑎𝑁𝑏𝑁 (𝑎 < 𝑏 → ((𝐹𝑎) < ((𝐹𝑏) + (𝑟 ∈ ℝ (𝑎 · 𝑟) = 1)) ∧ (𝐹𝑏) < ((𝐹𝑎) + (𝑟 ∈ ℝ (𝑎 · 𝑟) = 1)))))
4342ad3antrrr 483 . . . . . . . . . . 11 ((((𝜑𝑛N) ∧ 𝑘N) ∧ 𝑛 <N 𝑘) → ∀𝑎𝑁𝑏𝑁 (𝑎 < 𝑏 → ((𝐹𝑎) < ((𝐹𝑏) + (𝑟 ∈ ℝ (𝑎 · 𝑟) = 1)) ∧ (𝐹𝑏) < ((𝐹𝑎) + (𝑟 ∈ ℝ (𝑎 · 𝑟) = 1)))))
44 pitonn 7649 . . . . . . . . . . . . 13 (𝑛N → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)})
45 axcaucvg.n . . . . . . . . . . . . 13 𝑁 = {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}
4644, 45eleqtrrdi 2231 . . . . . . . . . . . 12 (𝑛N → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑁)
4746ad3antlr 484 . . . . . . . . . . 11 ((((𝜑𝑛N) ∧ 𝑘N) ∧ 𝑛 <N 𝑘) → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑁)
4821, 43, 47rspcdva 2789 . . . . . . . . . 10 ((((𝜑𝑛N) ∧ 𝑘N) ∧ 𝑛 <N 𝑘) → ∀𝑏𝑁 (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ < 𝑏 → ((𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) < ((𝐹𝑏) + (𝑟 ∈ ℝ (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · 𝑟) = 1)) ∧ (𝐹𝑏) < ((𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) + (𝑟 ∈ ℝ (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · 𝑟) = 1)))))
49 pitonn 7649 . . . . . . . . . . . 12 (𝑘N → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)})
5049, 45eleqtrrdi 2231 . . . . . . . . . . 11 (𝑘N → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑁)
5150ad2antlr 480 . . . . . . . . . 10 ((((𝜑𝑛N) ∧ 𝑘N) ∧ 𝑛 <N 𝑘) → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑁)
529, 48, 51rspcdva 2789 . . . . . . . . 9 ((((𝜑𝑛N) ∧ 𝑘N) ∧ 𝑛 <N 𝑘) → (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ < ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ → ((𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) < ((𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) + (𝑟 ∈ ℝ (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · 𝑟) = 1)) ∧ (𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) < ((𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) + (𝑟 ∈ ℝ (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · 𝑟) = 1)))))
532, 52mpd 13 . . . . . . . 8 ((((𝜑𝑛N) ∧ 𝑘N) ∧ 𝑛 <N 𝑘) → ((𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) < ((𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) + (𝑟 ∈ ℝ (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · 𝑟) = 1)) ∧ (𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) < ((𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) + (𝑟 ∈ ℝ (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · 𝑟) = 1))))
5453simpld 111 . . . . . . 7 ((((𝜑𝑛N) ∧ 𝑘N) ∧ 𝑛 <N 𝑘) → (𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) < ((𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) + (𝑟 ∈ ℝ (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · 𝑟) = 1)))
55 axcaucvg.f . . . . . . . . 9 (𝜑𝐹:𝑁⟶ℝ)
56 axcaucvg.g . . . . . . . . 9 𝐺 = (𝑗N ↦ (𝑧R (𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑗, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑗, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) = ⟨𝑧, 0R⟩))
5745, 55, 22, 56axcaucvglemval 7698 . . . . . . . 8 ((𝜑𝑛N) → (𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) = ⟨(𝐺𝑛), 0R⟩)
5857ad2antrr 479 . . . . . . 7 ((((𝜑𝑛N) ∧ 𝑘N) ∧ 𝑛 <N 𝑘) → (𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) = ⟨(𝐺𝑛), 0R⟩)
5945, 55, 22, 56axcaucvglemval 7698 . . . . . . . . . . 11 ((𝜑𝑘N) → (𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) = ⟨(𝐺𝑘), 0R⟩)
6059adantlr 468 . . . . . . . . . 10 (((𝜑𝑛N) ∧ 𝑘N) → (𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) = ⟨(𝐺𝑘), 0R⟩)
6160adantr 274 . . . . . . . . 9 ((((𝜑𝑛N) ∧ 𝑘N) ∧ 𝑛 <N 𝑘) → (𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) = ⟨(𝐺𝑘), 0R⟩)
62 recriota 7691 . . . . . . . . . 10 (𝑛N → (𝑟 ∈ ℝ (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · 𝑟) = 1) = ⟨[⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩)
6362ad3antlr 484 . . . . . . . . 9 ((((𝜑𝑛N) ∧ 𝑘N) ∧ 𝑛 <N 𝑘) → (𝑟 ∈ ℝ (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · 𝑟) = 1) = ⟨[⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩)
6461, 63oveq12d 5785 . . . . . . . 8 ((((𝜑𝑛N) ∧ 𝑘N) ∧ 𝑛 <N 𝑘) → ((𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) + (𝑟 ∈ ℝ (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · 𝑟) = 1)) = (⟨(𝐺𝑘), 0R⟩ + ⟨[⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩))
6545, 55, 22, 56axcaucvglemf 7697 . . . . . . . . . . 11 (𝜑𝐺:NR)
6665ad3antrrr 483 . . . . . . . . . 10 ((((𝜑𝑛N) ∧ 𝑘N) ∧ 𝑛 <N 𝑘) → 𝐺:NR)
67 simplr 519 . . . . . . . . . 10 ((((𝜑𝑛N) ∧ 𝑘N) ∧ 𝑛 <N 𝑘) → 𝑘N)
6866, 67ffvelrnd 5549 . . . . . . . . 9 ((((𝜑𝑛N) ∧ 𝑘N) ∧ 𝑛 <N 𝑘) → (𝐺𝑘) ∈ R)
69 recnnpr 7349 . . . . . . . . . . 11 (𝑛N → ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ ∈ P)
70 prsrcl 7585 . . . . . . . . . . 11 (⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ ∈ P → [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~RR)
7169, 70syl 14 . . . . . . . . . 10 (𝑛N → [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~RR)
7271ad3antlr 484 . . . . . . . . 9 ((((𝜑𝑛N) ∧ 𝑘N) ∧ 𝑛 <N 𝑘) → [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~RR)
73 addresr 7638 . . . . . . . . 9 (((𝐺𝑘) ∈ R ∧ [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~RR) → (⟨(𝐺𝑘), 0R⟩ + ⟨[⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) = ⟨((𝐺𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ), 0R⟩)
7468, 72, 73syl2anc 408 . . . . . . . 8 ((((𝜑𝑛N) ∧ 𝑘N) ∧ 𝑛 <N 𝑘) → (⟨(𝐺𝑘), 0R⟩ + ⟨[⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) = ⟨((𝐺𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ), 0R⟩)
7564, 74eqtrd 2170 . . . . . . 7 ((((𝜑𝑛N) ∧ 𝑘N) ∧ 𝑛 <N 𝑘) → ((𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) + (𝑟 ∈ ℝ (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · 𝑟) = 1)) = ⟨((𝐺𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ), 0R⟩)
7654, 58, 753brtr3d 3954 . . . . . 6 ((((𝜑𝑛N) ∧ 𝑘N) ∧ 𝑛 <N 𝑘) → ⟨(𝐺𝑛), 0R⟩ < ⟨((𝐺𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ), 0R⟩)
77 ltresr 7640 . . . . . 6 (⟨(𝐺𝑛), 0R⟩ < ⟨((𝐺𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ), 0R⟩ ↔ (𝐺𝑛) <R ((𝐺𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))
7876, 77sylib 121 . . . . 5 ((((𝜑𝑛N) ∧ 𝑘N) ∧ 𝑛 <N 𝑘) → (𝐺𝑛) <R ((𝐺𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))
7953simprd 113 . . . . . . 7 ((((𝜑𝑛N) ∧ 𝑘N) ∧ 𝑛 <N 𝑘) → (𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) < ((𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) + (𝑟 ∈ ℝ (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · 𝑟) = 1)))
8058, 63oveq12d 5785 . . . . . . . 8 ((((𝜑𝑛N) ∧ 𝑘N) ∧ 𝑛 <N 𝑘) → ((𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) + (𝑟 ∈ ℝ (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · 𝑟) = 1)) = (⟨(𝐺𝑛), 0R⟩ + ⟨[⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩))
81 simpllr 523 . . . . . . . . . 10 ((((𝜑𝑛N) ∧ 𝑘N) ∧ 𝑛 <N 𝑘) → 𝑛N)
8266, 81ffvelrnd 5549 . . . . . . . . 9 ((((𝜑𝑛N) ∧ 𝑘N) ∧ 𝑛 <N 𝑘) → (𝐺𝑛) ∈ R)
83 addresr 7638 . . . . . . . . 9 (((𝐺𝑛) ∈ R ∧ [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~RR) → (⟨(𝐺𝑛), 0R⟩ + ⟨[⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) = ⟨((𝐺𝑛) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ), 0R⟩)
8482, 72, 83syl2anc 408 . . . . . . . 8 ((((𝜑𝑛N) ∧ 𝑘N) ∧ 𝑛 <N 𝑘) → (⟨(𝐺𝑛), 0R⟩ + ⟨[⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) = ⟨((𝐺𝑛) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ), 0R⟩)
8580, 84eqtrd 2170 . . . . . . 7 ((((𝜑𝑛N) ∧ 𝑘N) ∧ 𝑛 <N 𝑘) → ((𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) + (𝑟 ∈ ℝ (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · 𝑟) = 1)) = ⟨((𝐺𝑛) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ), 0R⟩)
8679, 61, 853brtr3d 3954 . . . . . 6 ((((𝜑𝑛N) ∧ 𝑘N) ∧ 𝑛 <N 𝑘) → ⟨(𝐺𝑘), 0R⟩ < ⟨((𝐺𝑛) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ), 0R⟩)
87 ltresr 7640 . . . . . 6 (⟨(𝐺𝑘), 0R⟩ < ⟨((𝐺𝑛) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ), 0R⟩ ↔ (𝐺𝑘) <R ((𝐺𝑛) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))
8886, 87sylib 121 . . . . 5 ((((𝜑𝑛N) ∧ 𝑘N) ∧ 𝑛 <N 𝑘) → (𝐺𝑘) <R ((𝐺𝑛) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))
8978, 88jca 304 . . . 4 ((((𝜑𝑛N) ∧ 𝑘N) ∧ 𝑛 <N 𝑘) → ((𝐺𝑛) <R ((𝐺𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ∧ (𝐺𝑘) <R ((𝐺𝑛) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R )))
9089ex 114 . . 3 (((𝜑𝑛N) ∧ 𝑘N) → (𝑛 <N 𝑘 → ((𝐺𝑛) <R ((𝐺𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ∧ (𝐺𝑘) <R ((𝐺𝑛) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))))
9190ralrimiva 2503 . 2 ((𝜑𝑛N) → ∀𝑘N (𝑛 <N 𝑘 → ((𝐺𝑛) <R ((𝐺𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ∧ (𝐺𝑘) <R ((𝐺𝑛) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))))
9291ralrimiva 2503 1 (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐺𝑛) <R ((𝐺𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ∧ (𝐺𝑘) <R ((𝐺𝑛) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1331  wcel 1480  {cab 2123  wral 2414  cop 3525   cint 3766   class class class wbr 3924  cmpt 3984  wf 5114  cfv 5118  crio 5722  (class class class)co 5767  1oc1o 6299  [cec 6420  Ncnpi 7073   <N clti 7076   ~Q ceq 7080  *Qcrq 7085   <Q cltq 7086  Pcnp 7092  1Pc1p 7093   +P cpp 7094   ~R cer 7097  Rcnr 7098  0Rc0r 7099   +R cplr 7102   <R cltr 7104  cr 7612  1c1 7614   + caddc 7616   < cltrr 7617   · cmul 7618
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-coll 4038  ax-sep 4041  ax-nul 4049  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-iinf 4497
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-ral 2419  df-rex 2420  df-reu 2421  df-rmo 2422  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-tr 4022  df-eprel 4206  df-id 4210  df-po 4213  df-iso 4214  df-iord 4283  df-on 4285  df-suc 4288  df-iom 4500  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-fv 5126  df-riota 5723  df-ov 5770  df-oprab 5771  df-mpo 5772  df-1st 6031  df-2nd 6032  df-recs 6195  df-irdg 6260  df-1o 6306  df-2o 6307  df-oadd 6310  df-omul 6311  df-er 6422  df-ec 6424  df-qs 6428  df-ni 7105  df-pli 7106  df-mi 7107  df-lti 7108  df-plpq 7145  df-mpq 7146  df-enq 7148  df-nqqs 7149  df-plqqs 7150  df-mqqs 7151  df-1nqqs 7152  df-rq 7153  df-ltnqqs 7154  df-enq0 7225  df-nq0 7226  df-0nq0 7227  df-plq0 7228  df-mq0 7229  df-inp 7267  df-i1p 7268  df-iplp 7269  df-imp 7270  df-iltp 7271  df-enr 7527  df-nr 7528  df-plr 7529  df-mr 7530  df-ltr 7531  df-0r 7532  df-1r 7533  df-m1r 7534  df-c 7619  df-0 7620  df-1 7621  df-r 7623  df-add 7624  df-mul 7625  df-lt 7626
This theorem is referenced by:  axcaucvglemres  7700
  Copyright terms: Public domain W3C validator