ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  axcaucvglemcl GIF version

Theorem axcaucvglemcl 7703
Description: Lemma for axcaucvg 7708. Mapping to N and R. (Contributed by Jim Kingdon, 10-Jul-2021.)
Hypotheses
Ref Expression
axcaucvglemcl.n 𝑁 = {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}
axcaucvglemcl.f (𝜑𝐹:𝑁⟶ℝ)
Assertion
Ref Expression
axcaucvglemcl ((𝜑𝐽N) → (𝑧R (𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝐽, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝐽, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) = ⟨𝑧, 0R⟩) ∈ R)
Distinct variable groups:   𝑧,𝐹   𝐽,𝑙,𝑢,𝑧   𝑦,𝑙,𝑢   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑢,𝑙)   𝐹(𝑥,𝑦,𝑢,𝑙)   𝐽(𝑥,𝑦)   𝑁(𝑥,𝑦,𝑧,𝑢,𝑙)

Proof of Theorem axcaucvglemcl
StepHypRef Expression
1 pitonn 7656 . . . . . 6 (𝐽N → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝐽, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝐽, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)})
2 axcaucvglemcl.n . . . . . 6 𝑁 = {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}
31, 2eleqtrrdi 2233 . . . . 5 (𝐽N → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝐽, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝐽, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑁)
4 axcaucvglemcl.f . . . . . 6 (𝜑𝐹:𝑁⟶ℝ)
54ffvelrnda 5555 . . . . 5 ((𝜑 ∧ ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝐽, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝐽, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑁) → (𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝐽, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝐽, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) ∈ ℝ)
63, 5sylan2 284 . . . 4 ((𝜑𝐽N) → (𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝐽, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝐽, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) ∈ ℝ)
7 elrealeu 7637 . . . 4 ((𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝐽, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝐽, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) ∈ ℝ ↔ ∃!𝑧R𝑧, 0R⟩ = (𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝐽, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝐽, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩))
86, 7sylib 121 . . 3 ((𝜑𝐽N) → ∃!𝑧R𝑧, 0R⟩ = (𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝐽, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝐽, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩))
9 eqcom 2141 . . . 4 (⟨𝑧, 0R⟩ = (𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝐽, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝐽, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) ↔ (𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝐽, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝐽, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) = ⟨𝑧, 0R⟩)
109reubii 2616 . . 3 (∃!𝑧R𝑧, 0R⟩ = (𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝐽, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝐽, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) ↔ ∃!𝑧R (𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝐽, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝐽, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) = ⟨𝑧, 0R⟩)
118, 10sylib 121 . 2 ((𝜑𝐽N) → ∃!𝑧R (𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝐽, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝐽, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) = ⟨𝑧, 0R⟩)
12 riotacl 5744 . 2 (∃!𝑧R (𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝐽, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝐽, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) = ⟨𝑧, 0R⟩ → (𝑧R (𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝐽, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝐽, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) = ⟨𝑧, 0R⟩) ∈ R)
1311, 12syl 14 1 ((𝜑𝐽N) → (𝑧R (𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝐽, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝐽, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) = ⟨𝑧, 0R⟩) ∈ R)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1331  wcel 1480  {cab 2125  wral 2416  ∃!wreu 2418  cop 3530   cint 3771   class class class wbr 3929  wf 5119  cfv 5123  crio 5729  (class class class)co 5774  1oc1o 6306  [cec 6427  Ncnpi 7080   ~Q ceq 7087   <Q cltq 7093  1Pc1p 7100   +P cpp 7101   ~R cer 7104  Rcnr 7105  0Rc0r 7106  cr 7619  1c1 7621   + caddc 7623
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-eprel 4211  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-irdg 6267  df-1o 6313  df-2o 6314  df-oadd 6317  df-omul 6318  df-er 6429  df-ec 6431  df-qs 6435  df-ni 7112  df-pli 7113  df-mi 7114  df-lti 7115  df-plpq 7152  df-mpq 7153  df-enq 7155  df-nqqs 7156  df-plqqs 7157  df-mqqs 7158  df-1nqqs 7159  df-rq 7160  df-ltnqqs 7161  df-enq0 7232  df-nq0 7233  df-0nq0 7234  df-plq0 7235  df-mq0 7236  df-inp 7274  df-i1p 7275  df-iplp 7276  df-enr 7534  df-nr 7535  df-plr 7536  df-0r 7539  df-1r 7540  df-c 7626  df-1 7628  df-r 7630  df-add 7631
This theorem is referenced by:  axcaucvglemf  7704  axcaucvglemval  7705
  Copyright terms: Public domain W3C validator