ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  axcaucvglemval GIF version

Theorem axcaucvglemval 7028
Description: Lemma for axcaucvg 7031. Value of sequence when mapping to N and R. (Contributed by Jim Kingdon, 10-Jul-2021.)
Hypotheses
Ref Expression
axcaucvg.n 𝑁 = {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}
axcaucvg.f (𝜑𝐹:𝑁⟶ℝ)
axcaucvg.cau (𝜑 → ∀𝑛𝑁𝑘𝑁 (𝑛 < 𝑘 → ((𝐹𝑛) < ((𝐹𝑘) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)))))
axcaucvg.g 𝐺 = (𝑗N ↦ (𝑧R (𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑗, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑗, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) = ⟨𝑧, 0R⟩))
Assertion
Ref Expression
axcaucvglemval ((𝜑𝐽N) → (𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝐽, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝐽, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) = ⟨(𝐺𝐽), 0R⟩)
Distinct variable groups:   𝑗,𝐹,𝑧   𝑧,𝐺   𝑗,𝐽,𝑙,𝑢,𝑧   𝜑,𝑗   𝑦,𝑙,𝑢   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑢,𝑘,𝑛,𝑟,𝑙)   𝐹(𝑥,𝑦,𝑢,𝑘,𝑛,𝑟,𝑙)   𝐺(𝑥,𝑦,𝑢,𝑗,𝑘,𝑛,𝑟,𝑙)   𝐽(𝑥,𝑦,𝑘,𝑛,𝑟)   𝑁(𝑥,𝑦,𝑧,𝑢,𝑗,𝑘,𝑛,𝑟,𝑙)

Proof of Theorem axcaucvglemval
StepHypRef Expression
1 axcaucvg.g . . . . 5 𝐺 = (𝑗N ↦ (𝑧R (𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑗, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑗, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) = ⟨𝑧, 0R⟩))
21a1i 9 . . . 4 ((𝜑𝐽N) → 𝐺 = (𝑗N ↦ (𝑧R (𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑗, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑗, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) = ⟨𝑧, 0R⟩)))
3 opeq1 3576 . . . . . . . . . . . . . . . 16 (𝑗 = 𝐽 → ⟨𝑗, 1𝑜⟩ = ⟨𝐽, 1𝑜⟩)
43eceq1d 6172 . . . . . . . . . . . . . . 15 (𝑗 = 𝐽 → [⟨𝑗, 1𝑜⟩] ~Q = [⟨𝐽, 1𝑜⟩] ~Q )
54breq2d 3803 . . . . . . . . . . . . . 14 (𝑗 = 𝐽 → (𝑙 <Q [⟨𝑗, 1𝑜⟩] ~Q𝑙 <Q [⟨𝐽, 1𝑜⟩] ~Q ))
65abbidv 2171 . . . . . . . . . . . . 13 (𝑗 = 𝐽 → {𝑙𝑙 <Q [⟨𝑗, 1𝑜⟩] ~Q } = {𝑙𝑙 <Q [⟨𝐽, 1𝑜⟩] ~Q })
74breq1d 3801 . . . . . . . . . . . . . 14 (𝑗 = 𝐽 → ([⟨𝑗, 1𝑜⟩] ~Q <Q 𝑢 ↔ [⟨𝐽, 1𝑜⟩] ~Q <Q 𝑢))
87abbidv 2171 . . . . . . . . . . . . 13 (𝑗 = 𝐽 → {𝑢 ∣ [⟨𝑗, 1𝑜⟩] ~Q <Q 𝑢} = {𝑢 ∣ [⟨𝐽, 1𝑜⟩] ~Q <Q 𝑢})
96, 8opeq12d 3584 . . . . . . . . . . . 12 (𝑗 = 𝐽 → ⟨{𝑙𝑙 <Q [⟨𝑗, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑗, 1𝑜⟩] ~Q <Q 𝑢}⟩ = ⟨{𝑙𝑙 <Q [⟨𝐽, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝐽, 1𝑜⟩] ~Q <Q 𝑢}⟩)
109oveq1d 5554 . . . . . . . . . . 11 (𝑗 = 𝐽 → (⟨{𝑙𝑙 <Q [⟨𝑗, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑗, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P) = (⟨{𝑙𝑙 <Q [⟨𝐽, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝐽, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P))
1110opeq1d 3582 . . . . . . . . . 10 (𝑗 = 𝐽 → ⟨(⟨{𝑙𝑙 <Q [⟨𝑗, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑗, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩ = ⟨(⟨{𝑙𝑙 <Q [⟨𝐽, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝐽, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩)
1211eceq1d 6172 . . . . . . . . 9 (𝑗 = 𝐽 → [⟨(⟨{𝑙𝑙 <Q [⟨𝑗, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑗, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R = [⟨(⟨{𝑙𝑙 <Q [⟨𝐽, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝐽, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R )
1312opeq1d 3582 . . . . . . . 8 (𝑗 = 𝐽 → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑗, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑗, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝐽, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝐽, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩)
1413fveq2d 5209 . . . . . . 7 (𝑗 = 𝐽 → (𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑗, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑗, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) = (𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝐽, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝐽, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩))
1514eqeq1d 2064 . . . . . 6 (𝑗 = 𝐽 → ((𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑗, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑗, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) = ⟨𝑧, 0R⟩ ↔ (𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝐽, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝐽, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) = ⟨𝑧, 0R⟩))
1615riotabidv 5497 . . . . 5 (𝑗 = 𝐽 → (𝑧R (𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑗, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑗, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) = ⟨𝑧, 0R⟩) = (𝑧R (𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝐽, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝐽, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) = ⟨𝑧, 0R⟩))
1716adantl 266 . . . 4 (((𝜑𝐽N) ∧ 𝑗 = 𝐽) → (𝑧R (𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑗, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑗, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) = ⟨𝑧, 0R⟩) = (𝑧R (𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝐽, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝐽, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) = ⟨𝑧, 0R⟩))
18 simpr 107 . . . 4 ((𝜑𝐽N) → 𝐽N)
19 axcaucvg.n . . . . 5 𝑁 = {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}
20 axcaucvg.f . . . . 5 (𝜑𝐹:𝑁⟶ℝ)
2119, 20axcaucvglemcl 7026 . . . 4 ((𝜑𝐽N) → (𝑧R (𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝐽, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝐽, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) = ⟨𝑧, 0R⟩) ∈ R)
222, 17, 18, 21fvmptd 5280 . . 3 ((𝜑𝐽N) → (𝐺𝐽) = (𝑧R (𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝐽, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝐽, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) = ⟨𝑧, 0R⟩))
2322eqcomd 2061 . 2 ((𝜑𝐽N) → (𝑧R (𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝐽, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝐽, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) = ⟨𝑧, 0R⟩) = (𝐺𝐽))
2422, 21eqeltrd 2130 . . 3 ((𝜑𝐽N) → (𝐺𝐽) ∈ R)
2520adantr 265 . . . . . 6 ((𝜑𝐽N) → 𝐹:𝑁⟶ℝ)
26 pitonn 6981 . . . . . . . 8 (𝐽N → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝐽, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝐽, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)})
2726, 19syl6eleqr 2147 . . . . . . 7 (𝐽N → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝐽, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝐽, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑁)
2827adantl 266 . . . . . 6 ((𝜑𝐽N) → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝐽, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝐽, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑁)
2925, 28ffvelrnd 5330 . . . . 5 ((𝜑𝐽N) → (𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝐽, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝐽, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) ∈ ℝ)
30 elrealeu 6963 . . . . 5 ((𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝐽, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝐽, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) ∈ ℝ ↔ ∃!𝑧R𝑧, 0R⟩ = (𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝐽, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝐽, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩))
3129, 30sylib 131 . . . 4 ((𝜑𝐽N) → ∃!𝑧R𝑧, 0R⟩ = (𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝐽, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝐽, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩))
32 eqcom 2058 . . . . 5 (⟨𝑧, 0R⟩ = (𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝐽, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝐽, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) ↔ (𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝐽, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝐽, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) = ⟨𝑧, 0R⟩)
3332reubii 2512 . . . 4 (∃!𝑧R𝑧, 0R⟩ = (𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝐽, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝐽, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) ↔ ∃!𝑧R (𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝐽, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝐽, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) = ⟨𝑧, 0R⟩)
3431, 33sylib 131 . . 3 ((𝜑𝐽N) → ∃!𝑧R (𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝐽, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝐽, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) = ⟨𝑧, 0R⟩)
35 opeq1 3576 . . . . 5 (𝑧 = (𝐺𝐽) → ⟨𝑧, 0R⟩ = ⟨(𝐺𝐽), 0R⟩)
3635eqeq2d 2067 . . . 4 (𝑧 = (𝐺𝐽) → ((𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝐽, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝐽, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) = ⟨𝑧, 0R⟩ ↔ (𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝐽, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝐽, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) = ⟨(𝐺𝐽), 0R⟩))
3736riota2 5517 . . 3 (((𝐺𝐽) ∈ R ∧ ∃!𝑧R (𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝐽, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝐽, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) = ⟨𝑧, 0R⟩) → ((𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝐽, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝐽, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) = ⟨(𝐺𝐽), 0R⟩ ↔ (𝑧R (𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝐽, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝐽, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) = ⟨𝑧, 0R⟩) = (𝐺𝐽)))
3824, 34, 37syl2anc 397 . 2 ((𝜑𝐽N) → ((𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝐽, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝐽, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) = ⟨(𝐺𝐽), 0R⟩ ↔ (𝑧R (𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝐽, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝐽, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) = ⟨𝑧, 0R⟩) = (𝐺𝐽)))
3923, 38mpbird 160 1 ((𝜑𝐽N) → (𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝐽, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝐽, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) = ⟨(𝐺𝐽), 0R⟩)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 101  wb 102   = wceq 1259  wcel 1409  {cab 2042  wral 2323  ∃!wreu 2325  cop 3405   cint 3642   class class class wbr 3791  cmpt 3845  wf 4925  cfv 4929  crio 5494  (class class class)co 5539  1𝑜c1o 6024  [cec 6134  Ncnpi 6427   ~Q ceq 6434   <Q cltq 6440  1Pc1p 6447   +P cpp 6448   ~R cer 6451  Rcnr 6452  0Rc0r 6453  cr 6945  1c1 6947   + caddc 6949   < cltrr 6950   · cmul 6951
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-13 1420  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-coll 3899  ax-sep 3902  ax-nul 3910  ax-pow 3954  ax-pr 3971  ax-un 4197  ax-setind 4289  ax-iinf 4338
This theorem depends on definitions:  df-bi 114  df-dc 754  df-3or 897  df-3an 898  df-tru 1262  df-fal 1265  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ne 2221  df-ral 2328  df-rex 2329  df-reu 2330  df-rmo 2331  df-rab 2332  df-v 2576  df-sbc 2787  df-csb 2880  df-dif 2947  df-un 2949  df-in 2951  df-ss 2958  df-nul 3252  df-pw 3388  df-sn 3408  df-pr 3409  df-op 3411  df-uni 3608  df-int 3643  df-iun 3686  df-br 3792  df-opab 3846  df-mpt 3847  df-tr 3882  df-eprel 4053  df-id 4057  df-po 4060  df-iso 4061  df-iord 4130  df-on 4132  df-suc 4135  df-iom 4341  df-xp 4378  df-rel 4379  df-cnv 4380  df-co 4381  df-dm 4382  df-rn 4383  df-res 4384  df-ima 4385  df-iota 4894  df-fun 4931  df-fn 4932  df-f 4933  df-f1 4934  df-fo 4935  df-f1o 4936  df-fv 4937  df-riota 5495  df-ov 5542  df-oprab 5543  df-mpt2 5544  df-1st 5794  df-2nd 5795  df-recs 5950  df-irdg 5987  df-1o 6031  df-2o 6032  df-oadd 6035  df-omul 6036  df-er 6136  df-ec 6138  df-qs 6142  df-ni 6459  df-pli 6460  df-mi 6461  df-lti 6462  df-plpq 6499  df-mpq 6500  df-enq 6502  df-nqqs 6503  df-plqqs 6504  df-mqqs 6505  df-1nqqs 6506  df-rq 6507  df-ltnqqs 6508  df-enq0 6579  df-nq0 6580  df-0nq0 6581  df-plq0 6582  df-mq0 6583  df-inp 6621  df-i1p 6622  df-iplp 6623  df-enr 6868  df-nr 6869  df-plr 6870  df-0r 6873  df-1r 6874  df-c 6952  df-1 6954  df-r 6956  df-add 6957
This theorem is referenced by:  axcaucvglemcau  7029  axcaucvglemres  7030
  Copyright terms: Public domain W3C validator