ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  axext3 GIF version

Theorem axext3 2120
Description: A generalization of the Axiom of Extensionality in which 𝑥 and 𝑦 need not be distinct. (Contributed by NM, 15-Sep-1993.) (Proof shortened by Andrew Salmon, 12-Aug-2011.)
Assertion
Ref Expression
axext3 (∀𝑧(𝑧𝑥𝑧𝑦) → 𝑥 = 𝑦)
Distinct variable groups:   𝑥,𝑧   𝑦,𝑧

Proof of Theorem axext3
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 elequ2 1691 . . . . 5 (𝑤 = 𝑥 → (𝑧𝑤𝑧𝑥))
21bibi1d 232 . . . 4 (𝑤 = 𝑥 → ((𝑧𝑤𝑧𝑦) ↔ (𝑧𝑥𝑧𝑦)))
32albidv 1796 . . 3 (𝑤 = 𝑥 → (∀𝑧(𝑧𝑤𝑧𝑦) ↔ ∀𝑧(𝑧𝑥𝑧𝑦)))
4 equequ1 1688 . . 3 (𝑤 = 𝑥 → (𝑤 = 𝑦𝑥 = 𝑦))
53, 4imbi12d 233 . 2 (𝑤 = 𝑥 → ((∀𝑧(𝑧𝑤𝑧𝑦) → 𝑤 = 𝑦) ↔ (∀𝑧(𝑧𝑥𝑧𝑦) → 𝑥 = 𝑦)))
6 ax-ext 2119 . 2 (∀𝑧(𝑧𝑤𝑧𝑦) → 𝑤 = 𝑦)
75, 6chvarv 1907 1 (∀𝑧(𝑧𝑥𝑧𝑦) → 𝑥 = 𝑦)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  wal 1329
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1423  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-ext 2119
This theorem depends on definitions:  df-bi 116  df-nf 1437
This theorem is referenced by:  axext4  2121
  Copyright terms: Public domain W3C validator