ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  axmulcl GIF version

Theorem axmulcl 6970
Description: Closure law for multiplication of complex numbers. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-mulcl 7010 be used later. Instead, in most cases use mulcl 7036. (Contributed by NM, 10-Aug-1995.) (New usage is discouraged.)
Assertion
Ref Expression
axmulcl ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) ∈ ℂ)

Proof of Theorem axmulcl
Dummy variables 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elxpi 4386 . . . . 5 (𝐴 ∈ (R × R) → ∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥R𝑦R)))
2 df-c 6923 . . . . 5 ℂ = (R × R)
31, 2eleq2s 2146 . . . 4 (𝐴 ∈ ℂ → ∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥R𝑦R)))
4 elxpi 4386 . . . . 5 (𝐵 ∈ (R × R) → ∃𝑧𝑤(𝐵 = ⟨𝑧, 𝑤⟩ ∧ (𝑧R𝑤R)))
54, 2eleq2s 2146 . . . 4 (𝐵 ∈ ℂ → ∃𝑧𝑤(𝐵 = ⟨𝑧, 𝑤⟩ ∧ (𝑧R𝑤R)))
63, 5anim12i 325 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥R𝑦R)) ∧ ∃𝑧𝑤(𝐵 = ⟨𝑧, 𝑤⟩ ∧ (𝑧R𝑤R))))
7 ee4anv 1823 . . 3 (∃𝑥𝑦𝑧𝑤((𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥R𝑦R)) ∧ (𝐵 = ⟨𝑧, 𝑤⟩ ∧ (𝑧R𝑤R))) ↔ (∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥R𝑦R)) ∧ ∃𝑧𝑤(𝐵 = ⟨𝑧, 𝑤⟩ ∧ (𝑧R𝑤R))))
86, 7sylibr 141 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ∃𝑥𝑦𝑧𝑤((𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥R𝑦R)) ∧ (𝐵 = ⟨𝑧, 𝑤⟩ ∧ (𝑧R𝑤R))))
9 simpll 489 . . . . . . 7 (((𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥R𝑦R)) ∧ (𝐵 = ⟨𝑧, 𝑤⟩ ∧ (𝑧R𝑤R))) → 𝐴 = ⟨𝑥, 𝑦⟩)
10 simprl 491 . . . . . . 7 (((𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥R𝑦R)) ∧ (𝐵 = ⟨𝑧, 𝑤⟩ ∧ (𝑧R𝑤R))) → 𝐵 = ⟨𝑧, 𝑤⟩)
119, 10oveq12d 5555 . . . . . 6 (((𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥R𝑦R)) ∧ (𝐵 = ⟨𝑧, 𝑤⟩ ∧ (𝑧R𝑤R))) → (𝐴 · 𝐵) = (⟨𝑥, 𝑦⟩ · ⟨𝑧, 𝑤⟩))
12 mulcnsr 6939 . . . . . . 7 (((𝑥R𝑦R) ∧ (𝑧R𝑤R)) → (⟨𝑥, 𝑦⟩ · ⟨𝑧, 𝑤⟩) = ⟨((𝑥 ·R 𝑧) +R (-1R ·R (𝑦 ·R 𝑤))), ((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤))⟩)
1312ad2ant2l 485 . . . . . 6 (((𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥R𝑦R)) ∧ (𝐵 = ⟨𝑧, 𝑤⟩ ∧ (𝑧R𝑤R))) → (⟨𝑥, 𝑦⟩ · ⟨𝑧, 𝑤⟩) = ⟨((𝑥 ·R 𝑧) +R (-1R ·R (𝑦 ·R 𝑤))), ((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤))⟩)
1411, 13eqtrd 2086 . . . . 5 (((𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥R𝑦R)) ∧ (𝐵 = ⟨𝑧, 𝑤⟩ ∧ (𝑧R𝑤R))) → (𝐴 · 𝐵) = ⟨((𝑥 ·R 𝑧) +R (-1R ·R (𝑦 ·R 𝑤))), ((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤))⟩)
15 simplrl 495 . . . . . . . . 9 (((𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥R𝑦R)) ∧ (𝐵 = ⟨𝑧, 𝑤⟩ ∧ (𝑧R𝑤R))) → 𝑥R)
16 simprrl 499 . . . . . . . . 9 (((𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥R𝑦R)) ∧ (𝐵 = ⟨𝑧, 𝑤⟩ ∧ (𝑧R𝑤R))) → 𝑧R)
17 mulclsr 6867 . . . . . . . . 9 ((𝑥R𝑧R) → (𝑥 ·R 𝑧) ∈ R)
1815, 16, 17syl2anc 397 . . . . . . . 8 (((𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥R𝑦R)) ∧ (𝐵 = ⟨𝑧, 𝑤⟩ ∧ (𝑧R𝑤R))) → (𝑥 ·R 𝑧) ∈ R)
19 m1r 6865 . . . . . . . . . 10 -1RR
2019a1i 9 . . . . . . . . 9 (((𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥R𝑦R)) ∧ (𝐵 = ⟨𝑧, 𝑤⟩ ∧ (𝑧R𝑤R))) → -1RR)
21 simplrr 496 . . . . . . . . . 10 (((𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥R𝑦R)) ∧ (𝐵 = ⟨𝑧, 𝑤⟩ ∧ (𝑧R𝑤R))) → 𝑦R)
22 simprrr 500 . . . . . . . . . 10 (((𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥R𝑦R)) ∧ (𝐵 = ⟨𝑧, 𝑤⟩ ∧ (𝑧R𝑤R))) → 𝑤R)
23 mulclsr 6867 . . . . . . . . . 10 ((𝑦R𝑤R) → (𝑦 ·R 𝑤) ∈ R)
2421, 22, 23syl2anc 397 . . . . . . . . 9 (((𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥R𝑦R)) ∧ (𝐵 = ⟨𝑧, 𝑤⟩ ∧ (𝑧R𝑤R))) → (𝑦 ·R 𝑤) ∈ R)
25 mulclsr 6867 . . . . . . . . 9 ((-1RR ∧ (𝑦 ·R 𝑤) ∈ R) → (-1R ·R (𝑦 ·R 𝑤)) ∈ R)
2620, 24, 25syl2anc 397 . . . . . . . 8 (((𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥R𝑦R)) ∧ (𝐵 = ⟨𝑧, 𝑤⟩ ∧ (𝑧R𝑤R))) → (-1R ·R (𝑦 ·R 𝑤)) ∈ R)
27 addclsr 6866 . . . . . . . 8 (((𝑥 ·R 𝑧) ∈ R ∧ (-1R ·R (𝑦 ·R 𝑤)) ∈ R) → ((𝑥 ·R 𝑧) +R (-1R ·R (𝑦 ·R 𝑤))) ∈ R)
2818, 26, 27syl2anc 397 . . . . . . 7 (((𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥R𝑦R)) ∧ (𝐵 = ⟨𝑧, 𝑤⟩ ∧ (𝑧R𝑤R))) → ((𝑥 ·R 𝑧) +R (-1R ·R (𝑦 ·R 𝑤))) ∈ R)
29 mulclsr 6867 . . . . . . . . 9 ((𝑦R𝑧R) → (𝑦 ·R 𝑧) ∈ R)
3021, 16, 29syl2anc 397 . . . . . . . 8 (((𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥R𝑦R)) ∧ (𝐵 = ⟨𝑧, 𝑤⟩ ∧ (𝑧R𝑤R))) → (𝑦 ·R 𝑧) ∈ R)
31 mulclsr 6867 . . . . . . . . 9 ((𝑥R𝑤R) → (𝑥 ·R 𝑤) ∈ R)
3215, 22, 31syl2anc 397 . . . . . . . 8 (((𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥R𝑦R)) ∧ (𝐵 = ⟨𝑧, 𝑤⟩ ∧ (𝑧R𝑤R))) → (𝑥 ·R 𝑤) ∈ R)
33 addclsr 6866 . . . . . . . 8 (((𝑦 ·R 𝑧) ∈ R ∧ (𝑥 ·R 𝑤) ∈ R) → ((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤)) ∈ R)
3430, 32, 33syl2anc 397 . . . . . . 7 (((𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥R𝑦R)) ∧ (𝐵 = ⟨𝑧, 𝑤⟩ ∧ (𝑧R𝑤R))) → ((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤)) ∈ R)
35 opelxpi 4401 . . . . . . 7 ((((𝑥 ·R 𝑧) +R (-1R ·R (𝑦 ·R 𝑤))) ∈ R ∧ ((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤)) ∈ R) → ⟨((𝑥 ·R 𝑧) +R (-1R ·R (𝑦 ·R 𝑤))), ((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤))⟩ ∈ (R × R))
3628, 34, 35syl2anc 397 . . . . . 6 (((𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥R𝑦R)) ∧ (𝐵 = ⟨𝑧, 𝑤⟩ ∧ (𝑧R𝑤R))) → ⟨((𝑥 ·R 𝑧) +R (-1R ·R (𝑦 ·R 𝑤))), ((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤))⟩ ∈ (R × R))
3736, 2syl6eleqr 2145 . . . . 5 (((𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥R𝑦R)) ∧ (𝐵 = ⟨𝑧, 𝑤⟩ ∧ (𝑧R𝑤R))) → ⟨((𝑥 ·R 𝑧) +R (-1R ·R (𝑦 ·R 𝑤))), ((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤))⟩ ∈ ℂ)
3814, 37eqeltrd 2128 . . . 4 (((𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥R𝑦R)) ∧ (𝐵 = ⟨𝑧, 𝑤⟩ ∧ (𝑧R𝑤R))) → (𝐴 · 𝐵) ∈ ℂ)
3938exlimivv 1790 . . 3 (∃𝑧𝑤((𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥R𝑦R)) ∧ (𝐵 = ⟨𝑧, 𝑤⟩ ∧ (𝑧R𝑤R))) → (𝐴 · 𝐵) ∈ ℂ)
4039exlimivv 1790 . 2 (∃𝑥𝑦𝑧𝑤((𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥R𝑦R)) ∧ (𝐵 = ⟨𝑧, 𝑤⟩ ∧ (𝑧R𝑤R))) → (𝐴 · 𝐵) ∈ ℂ)
418, 40syl 14 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) ∈ ℂ)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 101   = wceq 1257  wex 1395  wcel 1407  cop 3403   × cxp 4368  (class class class)co 5537  Rcnr 6423  -1Rcm1r 6426   +R cplr 6427   ·R cmr 6428  cc 6915   · cmul 6922
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 552  ax-in2 553  ax-io 638  ax-5 1350  ax-7 1351  ax-gen 1352  ax-ie1 1396  ax-ie2 1397  ax-8 1409  ax-10 1410  ax-11 1411  ax-i12 1412  ax-bndl 1413  ax-4 1414  ax-13 1418  ax-14 1419  ax-17 1433  ax-i9 1437  ax-ial 1441  ax-i5r 1442  ax-ext 2036  ax-coll 3897  ax-sep 3900  ax-nul 3908  ax-pow 3952  ax-pr 3969  ax-un 4195  ax-setind 4287  ax-iinf 4336
This theorem depends on definitions:  df-bi 114  df-dc 752  df-3or 895  df-3an 896  df-tru 1260  df-fal 1263  df-nf 1364  df-sb 1660  df-eu 1917  df-mo 1918  df-clab 2041  df-cleq 2047  df-clel 2050  df-nfc 2181  df-ne 2219  df-ral 2326  df-rex 2327  df-reu 2328  df-rab 2330  df-v 2574  df-sbc 2785  df-csb 2878  df-dif 2945  df-un 2947  df-in 2949  df-ss 2956  df-nul 3250  df-pw 3386  df-sn 3406  df-pr 3407  df-op 3409  df-uni 3606  df-int 3641  df-iun 3684  df-br 3790  df-opab 3844  df-mpt 3845  df-tr 3880  df-eprel 4051  df-id 4055  df-po 4058  df-iso 4059  df-iord 4128  df-on 4130  df-suc 4133  df-iom 4339  df-xp 4376  df-rel 4377  df-cnv 4378  df-co 4379  df-dm 4380  df-rn 4381  df-res 4382  df-ima 4383  df-iota 4892  df-fun 4929  df-fn 4930  df-f 4931  df-f1 4932  df-fo 4933  df-f1o 4934  df-fv 4935  df-ov 5540  df-oprab 5541  df-mpt2 5542  df-1st 5792  df-2nd 5793  df-recs 5948  df-irdg 5985  df-1o 6029  df-2o 6030  df-oadd 6033  df-omul 6034  df-er 6134  df-ec 6136  df-qs 6140  df-ni 6430  df-pli 6431  df-mi 6432  df-lti 6433  df-plpq 6470  df-mpq 6471  df-enq 6473  df-nqqs 6474  df-plqqs 6475  df-mqqs 6476  df-1nqqs 6477  df-rq 6478  df-ltnqqs 6479  df-enq0 6550  df-nq0 6551  df-0nq0 6552  df-plq0 6553  df-mq0 6554  df-inp 6592  df-i1p 6593  df-iplp 6594  df-imp 6595  df-enr 6839  df-nr 6840  df-plr 6841  df-mr 6842  df-m1r 6846  df-c 6923  df-mul 6929
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator