ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  axpweq GIF version

Theorem axpweq 4090
Description: Two equivalent ways to express the Power Set Axiom. Note that ax-pow 4093 is not used by the proof. (Contributed by NM, 22-Jun-2009.)
Hypothesis
Ref Expression
axpweq.1 𝐴 ∈ V
Assertion
Ref Expression
axpweq (𝒫 𝐴 ∈ V ↔ ∃𝑥𝑦(∀𝑧(𝑧𝑦𝑧𝐴) → 𝑦𝑥))
Distinct variable group:   𝑥,𝑦,𝑧,𝐴

Proof of Theorem axpweq
StepHypRef Expression
1 pwidg 3519 . . . 4 (𝒫 𝐴 ∈ V → 𝒫 𝐴 ∈ 𝒫 𝒫 𝐴)
2 pweq 3508 . . . . . 6 (𝑥 = 𝒫 𝐴 → 𝒫 𝑥 = 𝒫 𝒫 𝐴)
32eleq2d 2207 . . . . 5 (𝑥 = 𝒫 𝐴 → (𝒫 𝐴 ∈ 𝒫 𝑥 ↔ 𝒫 𝐴 ∈ 𝒫 𝒫 𝐴))
43spcegv 2769 . . . 4 (𝒫 𝐴 ∈ V → (𝒫 𝐴 ∈ 𝒫 𝒫 𝐴 → ∃𝑥𝒫 𝐴 ∈ 𝒫 𝑥))
51, 4mpd 13 . . 3 (𝒫 𝐴 ∈ V → ∃𝑥𝒫 𝐴 ∈ 𝒫 𝑥)
6 elex 2692 . . . 4 (𝒫 𝐴 ∈ 𝒫 𝑥 → 𝒫 𝐴 ∈ V)
76exlimiv 1577 . . 3 (∃𝑥𝒫 𝐴 ∈ 𝒫 𝑥 → 𝒫 𝐴 ∈ V)
85, 7impbii 125 . 2 (𝒫 𝐴 ∈ V ↔ ∃𝑥𝒫 𝐴 ∈ 𝒫 𝑥)
9 vex 2684 . . . . 5 𝑥 ∈ V
109elpw2 4077 . . . 4 (𝒫 𝐴 ∈ 𝒫 𝑥 ↔ 𝒫 𝐴𝑥)
11 pwss 3521 . . . . 5 (𝒫 𝐴𝑥 ↔ ∀𝑦(𝑦𝐴𝑦𝑥))
12 dfss2 3081 . . . . . . 7 (𝑦𝐴 ↔ ∀𝑧(𝑧𝑦𝑧𝐴))
1312imbi1i 237 . . . . . 6 ((𝑦𝐴𝑦𝑥) ↔ (∀𝑧(𝑧𝑦𝑧𝐴) → 𝑦𝑥))
1413albii 1446 . . . . 5 (∀𝑦(𝑦𝐴𝑦𝑥) ↔ ∀𝑦(∀𝑧(𝑧𝑦𝑧𝐴) → 𝑦𝑥))
1511, 14bitri 183 . . . 4 (𝒫 𝐴𝑥 ↔ ∀𝑦(∀𝑧(𝑧𝑦𝑧𝐴) → 𝑦𝑥))
1610, 15bitri 183 . . 3 (𝒫 𝐴 ∈ 𝒫 𝑥 ↔ ∀𝑦(∀𝑧(𝑧𝑦𝑧𝐴) → 𝑦𝑥))
1716exbii 1584 . 2 (∃𝑥𝒫 𝐴 ∈ 𝒫 𝑥 ↔ ∃𝑥𝑦(∀𝑧(𝑧𝑦𝑧𝐴) → 𝑦𝑥))
188, 17bitri 183 1 (𝒫 𝐴 ∈ V ↔ ∃𝑥𝑦(∀𝑧(𝑧𝑦𝑧𝐴) → 𝑦𝑥))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  wal 1329   = wceq 1331  wex 1468  wcel 1480  Vcvv 2681  wss 3066  𝒫 cpw 3505
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041
This theorem depends on definitions:  df-bi 116  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-v 2683  df-in 3072  df-ss 3079  df-pw 3507
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator