ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bcn2m1 GIF version

Theorem bcn2m1 10483
Description: Compute the binomial coefficient "𝑁 choose 2 " from "(𝑁 − 1) choose 2 ": (N-1) + ( (N-1) 2 ) = ( N 2 ). (Contributed by Alexander van der Vekens, 7-Jan-2018.)
Assertion
Ref Expression
bcn2m1 (𝑁 ∈ ℕ → ((𝑁 − 1) + ((𝑁 − 1)C2)) = (𝑁C2))

Proof of Theorem bcn2m1
StepHypRef Expression
1 nnm1nn0 8986 . . . 4 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0)
21nn0cnd 9000 . . 3 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℂ)
3 2z 9050 . . . . 5 2 ∈ ℤ
4 bccl 10481 . . . . 5 (((𝑁 − 1) ∈ ℕ0 ∧ 2 ∈ ℤ) → ((𝑁 − 1)C2) ∈ ℕ0)
51, 3, 4sylancl 409 . . . 4 (𝑁 ∈ ℕ → ((𝑁 − 1)C2) ∈ ℕ0)
65nn0cnd 9000 . . 3 (𝑁 ∈ ℕ → ((𝑁 − 1)C2) ∈ ℂ)
72, 6addcomd 7881 . 2 (𝑁 ∈ ℕ → ((𝑁 − 1) + ((𝑁 − 1)C2)) = (((𝑁 − 1)C2) + (𝑁 − 1)))
8 bcn1 10472 . . . . . 6 ((𝑁 − 1) ∈ ℕ0 → ((𝑁 − 1)C1) = (𝑁 − 1))
98eqcomd 2123 . . . . 5 ((𝑁 − 1) ∈ ℕ0 → (𝑁 − 1) = ((𝑁 − 1)C1))
101, 9syl 14 . . . 4 (𝑁 ∈ ℕ → (𝑁 − 1) = ((𝑁 − 1)C1))
11 1e2m1 8807 . . . . . 6 1 = (2 − 1)
1211a1i 9 . . . . 5 (𝑁 ∈ ℕ → 1 = (2 − 1))
1312oveq2d 5758 . . . 4 (𝑁 ∈ ℕ → ((𝑁 − 1)C1) = ((𝑁 − 1)C(2 − 1)))
1410, 13eqtrd 2150 . . 3 (𝑁 ∈ ℕ → (𝑁 − 1) = ((𝑁 − 1)C(2 − 1)))
1514oveq2d 5758 . 2 (𝑁 ∈ ℕ → (((𝑁 − 1)C2) + (𝑁 − 1)) = (((𝑁 − 1)C2) + ((𝑁 − 1)C(2 − 1))))
16 bcpasc 10480 . . . 4 (((𝑁 − 1) ∈ ℕ0 ∧ 2 ∈ ℤ) → (((𝑁 − 1)C2) + ((𝑁 − 1)C(2 − 1))) = (((𝑁 − 1) + 1)C2))
171, 3, 16sylancl 409 . . 3 (𝑁 ∈ ℕ → (((𝑁 − 1)C2) + ((𝑁 − 1)C(2 − 1))) = (((𝑁 − 1) + 1)C2))
18 nncn 8696 . . . . 5 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
19 1cnd 7750 . . . . 5 (𝑁 ∈ ℕ → 1 ∈ ℂ)
2018, 19npcand 8045 . . . 4 (𝑁 ∈ ℕ → ((𝑁 − 1) + 1) = 𝑁)
2120oveq1d 5757 . . 3 (𝑁 ∈ ℕ → (((𝑁 − 1) + 1)C2) = (𝑁C2))
2217, 21eqtrd 2150 . 2 (𝑁 ∈ ℕ → (((𝑁 − 1)C2) + ((𝑁 − 1)C(2 − 1))) = (𝑁C2))
237, 15, 223eqtrd 2154 1 (𝑁 ∈ ℕ → ((𝑁 − 1) + ((𝑁 − 1)C2)) = (𝑁C2))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1316  wcel 1465  (class class class)co 5742  1c1 7589   + caddc 7591  cmin 7901  cn 8688  2c2 8739  0cn0 8945  cz 9022  Ccbc 10461
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 588  ax-in2 589  ax-io 683  ax-5 1408  ax-7 1409  ax-gen 1410  ax-ie1 1454  ax-ie2 1455  ax-8 1467  ax-10 1468  ax-11 1469  ax-i12 1470  ax-bndl 1471  ax-4 1472  ax-13 1476  ax-14 1477  ax-17 1491  ax-i9 1495  ax-ial 1499  ax-i5r 1500  ax-ext 2099  ax-coll 4013  ax-sep 4016  ax-nul 4024  ax-pow 4068  ax-pr 4101  ax-un 4325  ax-setind 4422  ax-iinf 4472  ax-cnex 7679  ax-resscn 7680  ax-1cn 7681  ax-1re 7682  ax-icn 7683  ax-addcl 7684  ax-addrcl 7685  ax-mulcl 7686  ax-mulrcl 7687  ax-addcom 7688  ax-mulcom 7689  ax-addass 7690  ax-mulass 7691  ax-distr 7692  ax-i2m1 7693  ax-0lt1 7694  ax-1rid 7695  ax-0id 7696  ax-rnegex 7697  ax-precex 7698  ax-cnre 7699  ax-pre-ltirr 7700  ax-pre-ltwlin 7701  ax-pre-lttrn 7702  ax-pre-apti 7703  ax-pre-ltadd 7704  ax-pre-mulgt0 7705  ax-pre-mulext 7706
This theorem depends on definitions:  df-bi 116  df-dc 805  df-3or 948  df-3an 949  df-tru 1319  df-fal 1322  df-nf 1422  df-sb 1721  df-eu 1980  df-mo 1981  df-clab 2104  df-cleq 2110  df-clel 2113  df-nfc 2247  df-ne 2286  df-nel 2381  df-ral 2398  df-rex 2399  df-reu 2400  df-rmo 2401  df-rab 2402  df-v 2662  df-sbc 2883  df-csb 2976  df-dif 3043  df-un 3045  df-in 3047  df-ss 3054  df-nul 3334  df-if 3445  df-pw 3482  df-sn 3503  df-pr 3504  df-op 3506  df-uni 3707  df-int 3742  df-iun 3785  df-br 3900  df-opab 3960  df-mpt 3961  df-tr 3997  df-id 4185  df-po 4188  df-iso 4189  df-iord 4258  df-on 4260  df-ilim 4261  df-suc 4263  df-iom 4475  df-xp 4515  df-rel 4516  df-cnv 4517  df-co 4518  df-dm 4519  df-rn 4520  df-res 4521  df-ima 4522  df-iota 5058  df-fun 5095  df-fn 5096  df-f 5097  df-f1 5098  df-fo 5099  df-f1o 5100  df-fv 5101  df-riota 5698  df-ov 5745  df-oprab 5746  df-mpo 5747  df-1st 6006  df-2nd 6007  df-recs 6170  df-frec 6256  df-pnf 7770  df-mnf 7771  df-xr 7772  df-ltxr 7773  df-le 7774  df-sub 7903  df-neg 7904  df-reap 8305  df-ap 8312  df-div 8401  df-inn 8689  df-2 8747  df-n0 8946  df-z 9023  df-uz 9295  df-q 9380  df-rp 9410  df-fz 9759  df-seqfrec 10187  df-fac 10440  df-bc 10462
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator