ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bcval4 GIF version

Theorem bcval4 10466
Description: Value of the binomial coefficient, 𝑁 choose 𝐾, outside of its standard domain. Remark in [Gleason] p. 295. (Contributed by NM, 14-Jul-2005.) (Revised by Mario Carneiro, 7-Nov-2013.)
Assertion
Ref Expression
bcval4 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ ∧ (𝐾 < 0 ∨ 𝑁 < 𝐾)) → (𝑁C𝐾) = 0)

Proof of Theorem bcval4
StepHypRef Expression
1 elfzle1 9775 . . . . . . . . 9 (𝐾 ∈ (0...𝑁) → 0 ≤ 𝐾)
2 0re 7734 . . . . . . . . . 10 0 ∈ ℝ
3 elfzelz 9774 . . . . . . . . . . 11 (𝐾 ∈ (0...𝑁) → 𝐾 ∈ ℤ)
43zred 9141 . . . . . . . . . 10 (𝐾 ∈ (0...𝑁) → 𝐾 ∈ ℝ)
5 lenlt 7808 . . . . . . . . . 10 ((0 ∈ ℝ ∧ 𝐾 ∈ ℝ) → (0 ≤ 𝐾 ↔ ¬ 𝐾 < 0))
62, 4, 5sylancr 410 . . . . . . . . 9 (𝐾 ∈ (0...𝑁) → (0 ≤ 𝐾 ↔ ¬ 𝐾 < 0))
71, 6mpbid 146 . . . . . . . 8 (𝐾 ∈ (0...𝑁) → ¬ 𝐾 < 0)
87adantl 275 . . . . . . 7 ((𝑁 ∈ ℕ0𝐾 ∈ (0...𝑁)) → ¬ 𝐾 < 0)
9 elfzle2 9776 . . . . . . . . 9 (𝐾 ∈ (0...𝑁) → 𝐾𝑁)
109adantl 275 . . . . . . . 8 ((𝑁 ∈ ℕ0𝐾 ∈ (0...𝑁)) → 𝐾𝑁)
11 nn0re 8954 . . . . . . . . 9 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
12 lenlt 7808 . . . . . . . . 9 ((𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝐾𝑁 ↔ ¬ 𝑁 < 𝐾))
134, 11, 12syl2anr 288 . . . . . . . 8 ((𝑁 ∈ ℕ0𝐾 ∈ (0...𝑁)) → (𝐾𝑁 ↔ ¬ 𝑁 < 𝐾))
1410, 13mpbid 146 . . . . . . 7 ((𝑁 ∈ ℕ0𝐾 ∈ (0...𝑁)) → ¬ 𝑁 < 𝐾)
15 ioran 726 . . . . . . 7 (¬ (𝐾 < 0 ∨ 𝑁 < 𝐾) ↔ (¬ 𝐾 < 0 ∧ ¬ 𝑁 < 𝐾))
168, 14, 15sylanbrc 413 . . . . . 6 ((𝑁 ∈ ℕ0𝐾 ∈ (0...𝑁)) → ¬ (𝐾 < 0 ∨ 𝑁 < 𝐾))
1716ex 114 . . . . 5 (𝑁 ∈ ℕ0 → (𝐾 ∈ (0...𝑁) → ¬ (𝐾 < 0 ∨ 𝑁 < 𝐾)))
1817adantr 274 . . . 4 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ) → (𝐾 ∈ (0...𝑁) → ¬ (𝐾 < 0 ∨ 𝑁 < 𝐾)))
1918con2d 598 . . 3 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ) → ((𝐾 < 0 ∨ 𝑁 < 𝐾) → ¬ 𝐾 ∈ (0...𝑁)))
20193impia 1163 . 2 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ ∧ (𝐾 < 0 ∨ 𝑁 < 𝐾)) → ¬ 𝐾 ∈ (0...𝑁))
21 bcval3 10465 . 2 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ ∧ ¬ 𝐾 ∈ (0...𝑁)) → (𝑁C𝐾) = 0)
2220, 21syld3an3 1246 1 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ ∧ (𝐾 < 0 ∨ 𝑁 < 𝐾)) → (𝑁C𝐾) = 0)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 682  w3a 947   = wceq 1316  wcel 1465   class class class wbr 3899  (class class class)co 5742  cr 7587  0cc0 7588   < clt 7768  cle 7769  0cn0 8945  cz 9022  ...cfz 9758  Ccbc 10461
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 588  ax-in2 589  ax-io 683  ax-5 1408  ax-7 1409  ax-gen 1410  ax-ie1 1454  ax-ie2 1455  ax-8 1467  ax-10 1468  ax-11 1469  ax-i12 1470  ax-bndl 1471  ax-4 1472  ax-13 1476  ax-14 1477  ax-17 1491  ax-i9 1495  ax-ial 1499  ax-i5r 1500  ax-ext 2099  ax-coll 4013  ax-sep 4016  ax-nul 4024  ax-pow 4068  ax-pr 4101  ax-un 4325  ax-setind 4422  ax-iinf 4472  ax-cnex 7679  ax-resscn 7680  ax-1cn 7681  ax-1re 7682  ax-icn 7683  ax-addcl 7684  ax-addrcl 7685  ax-mulcl 7686  ax-mulrcl 7687  ax-addcom 7688  ax-mulcom 7689  ax-addass 7690  ax-mulass 7691  ax-distr 7692  ax-i2m1 7693  ax-0lt1 7694  ax-1rid 7695  ax-0id 7696  ax-rnegex 7697  ax-precex 7698  ax-cnre 7699  ax-pre-ltirr 7700  ax-pre-ltwlin 7701  ax-pre-lttrn 7702  ax-pre-apti 7703  ax-pre-ltadd 7704  ax-pre-mulgt0 7705  ax-pre-mulext 7706
This theorem depends on definitions:  df-bi 116  df-dc 805  df-3or 948  df-3an 949  df-tru 1319  df-fal 1322  df-nf 1422  df-sb 1721  df-eu 1980  df-mo 1981  df-clab 2104  df-cleq 2110  df-clel 2113  df-nfc 2247  df-ne 2286  df-nel 2381  df-ral 2398  df-rex 2399  df-reu 2400  df-rmo 2401  df-rab 2402  df-v 2662  df-sbc 2883  df-csb 2976  df-dif 3043  df-un 3045  df-in 3047  df-ss 3054  df-nul 3334  df-if 3445  df-pw 3482  df-sn 3503  df-pr 3504  df-op 3506  df-uni 3707  df-int 3742  df-iun 3785  df-br 3900  df-opab 3960  df-mpt 3961  df-tr 3997  df-id 4185  df-po 4188  df-iso 4189  df-iord 4258  df-on 4260  df-ilim 4261  df-suc 4263  df-iom 4475  df-xp 4515  df-rel 4516  df-cnv 4517  df-co 4518  df-dm 4519  df-rn 4520  df-res 4521  df-ima 4522  df-iota 5058  df-fun 5095  df-fn 5096  df-f 5097  df-f1 5098  df-fo 5099  df-f1o 5100  df-fv 5101  df-riota 5698  df-ov 5745  df-oprab 5746  df-mpo 5747  df-1st 6006  df-2nd 6007  df-recs 6170  df-frec 6256  df-pnf 7770  df-mnf 7771  df-xr 7772  df-ltxr 7773  df-le 7774  df-sub 7903  df-neg 7904  df-reap 8305  df-ap 8312  df-div 8401  df-inn 8689  df-n0 8946  df-z 9023  df-uz 9295  df-q 9380  df-fz 9759  df-seqfrec 10187  df-fac 10440  df-bc 10462
This theorem is referenced by:  bc0k  10470  bcn1  10472  bcpasc  10480
  Copyright terms: Public domain W3C validator