![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > bdcint | GIF version |
Description: The intersection of a setvar is a bounded class. (Contributed by BJ, 16-Oct-2019.) |
Ref | Expression |
---|---|
bdcint | ⊢ BOUNDED ∩ 𝑥 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-bdel 10770 | . . . . 5 ⊢ BOUNDED 𝑦 ∈ 𝑧 | |
2 | 1 | ax-bdal 10767 | . . . 4 ⊢ BOUNDED ∀𝑧 ∈ 𝑥 𝑦 ∈ 𝑧 |
3 | df-ral 2354 | . . . 4 ⊢ (∀𝑧 ∈ 𝑥 𝑦 ∈ 𝑧 ↔ ∀𝑧(𝑧 ∈ 𝑥 → 𝑦 ∈ 𝑧)) | |
4 | 2, 3 | bd0 10773 | . . 3 ⊢ BOUNDED ∀𝑧(𝑧 ∈ 𝑥 → 𝑦 ∈ 𝑧) |
5 | 4 | bdcab 10798 | . 2 ⊢ BOUNDED {𝑦 ∣ ∀𝑧(𝑧 ∈ 𝑥 → 𝑦 ∈ 𝑧)} |
6 | df-int 3645 | . 2 ⊢ ∩ 𝑥 = {𝑦 ∣ ∀𝑧(𝑧 ∈ 𝑥 → 𝑦 ∈ 𝑧)} | |
7 | 5, 6 | bdceqir 10793 | 1 ⊢ BOUNDED ∩ 𝑥 |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1283 {cab 2068 ∀wral 2349 ∩ cint 3644 BOUNDED wbdc 10789 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1377 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-4 1441 ax-17 1460 ax-ial 1468 ax-ext 2064 ax-bd0 10762 ax-bdal 10767 ax-bdel 10770 ax-bdsb 10771 |
This theorem depends on definitions: df-bi 115 df-clab 2069 df-cleq 2075 df-clel 2078 df-ral 2354 df-int 3645 df-bdc 10790 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |