![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > bdcpr | GIF version |
Description: The pair of two setvars is bounded. (Contributed by BJ, 16-Oct-2019.) |
Ref | Expression |
---|---|
bdcpr | ⊢ BOUNDED {𝑥, 𝑦} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bdcsn 10912 | . . 3 ⊢ BOUNDED {𝑥} | |
2 | bdcsn 10912 | . . 3 ⊢ BOUNDED {𝑦} | |
3 | 1, 2 | bdcun 10904 | . 2 ⊢ BOUNDED ({𝑥} ∪ {𝑦}) |
4 | df-pr 3424 | . 2 ⊢ {𝑥, 𝑦} = ({𝑥} ∪ {𝑦}) | |
5 | 3, 4 | bdceqir 10886 | 1 ⊢ BOUNDED {𝑥, 𝑦} |
Colors of variables: wff set class |
Syntax hints: ∪ cun 2981 {csn 3417 {cpr 3418 BOUNDED wbdc 10882 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1377 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-4 1441 ax-17 1460 ax-ial 1468 ax-ext 2065 ax-bd0 10855 ax-bdor 10858 ax-bdeq 10862 ax-bdsb 10864 |
This theorem depends on definitions: df-bi 115 df-clab 2070 df-cleq 2076 df-clel 2079 df-un 2987 df-sn 3423 df-pr 3424 df-bdc 10883 |
This theorem is referenced by: bdctp 10914 bdop 10917 |
Copyright terms: Public domain | W3C validator |