Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdcv GIF version

Theorem bdcv 10797
Description: A setvar is a bounded class. (Contributed by BJ, 3-Oct-2019.)
Assertion
Ref Expression
bdcv BOUNDED 𝑥

Proof of Theorem bdcv
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ax-bdel 10770 . 2 BOUNDED 𝑦𝑥
21bdelir 10796 1 BOUNDED 𝑥
Colors of variables: wff set class
Syntax hints:  BOUNDED wbdc 10789
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-gen 1379  ax-bdel 10770
This theorem depends on definitions:  df-bi 115  df-bdc 10790
This theorem is referenced by:  bdvsn  10823  bdcsuc  10829  bdeqsuc  10830  bj-inex  10856  bj-nntrans  10904  bj-omtrans  10909  bj-inf2vn  10927  bj-omex2  10930  bj-nn0sucALT  10931
  Copyright terms: Public domain W3C validator