Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdfind GIF version

Theorem bdfind 10899
Description: Bounded induction (principle of induction when 𝐴 is assumed to be bounded), proved from basic constructive axioms. See find 4348 for a nonconstructive proof of the general case. See findset 10898 for a proof when 𝐴 is assumed to be a set. (Contributed by BJ, 22-Nov-2019.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
bdfind.bd BOUNDED 𝐴
Assertion
Ref Expression
bdfind ((𝐴 ⊆ ω ∧ ∅ ∈ 𝐴 ∧ ∀𝑥𝐴 suc 𝑥𝐴) → 𝐴 = ω)
Distinct variable group:   𝑥,𝐴

Proof of Theorem bdfind
StepHypRef Expression
1 bdfind.bd . . . 4 BOUNDED 𝐴
2 bj-omex 10895 . . . 4 ω ∈ V
31, 2bdssex 10851 . . 3 (𝐴 ⊆ ω → 𝐴 ∈ V)
433ad2ant1 960 . 2 ((𝐴 ⊆ ω ∧ ∅ ∈ 𝐴 ∧ ∀𝑥𝐴 suc 𝑥𝐴) → 𝐴 ∈ V)
5 findset 10898 . 2 (𝐴 ∈ V → ((𝐴 ⊆ ω ∧ ∅ ∈ 𝐴 ∧ ∀𝑥𝐴 suc 𝑥𝐴) → 𝐴 = ω))
64, 5mpcom 36 1 ((𝐴 ⊆ ω ∧ ∅ ∈ 𝐴 ∧ ∀𝑥𝐴 suc 𝑥𝐴) → 𝐴 = ω)
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 920   = wceq 1285  wcel 1434  wral 2349  Vcvv 2602  wss 2974  c0 3258  suc csuc 4128  ωcom 4339  BOUNDED wbdc 10789
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-nul 3912  ax-pr 3972  ax-un 4196  ax-bd0 10762  ax-bdan 10764  ax-bdor 10765  ax-bdex 10768  ax-bdeq 10769  ax-bdel 10770  ax-bdsb 10771  ax-bdsep 10833  ax-infvn 10894
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1687  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ral 2354  df-rex 2355  df-rab 2358  df-v 2604  df-dif 2976  df-un 2978  df-in 2980  df-ss 2987  df-nul 3259  df-sn 3412  df-pr 3413  df-uni 3610  df-int 3645  df-suc 4134  df-iom 4340  df-bdc 10790  df-bj-ind 10880
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator