ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bernneq3 GIF version

Theorem bernneq3 10414
Description: A corollary of bernneq 10412. (Contributed by Mario Carneiro, 11-Mar-2014.)
Assertion
Ref Expression
bernneq3 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → 𝑁 < (𝑃𝑁))

Proof of Theorem bernneq3
StepHypRef Expression
1 nn0re 8986 . . 3 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
21adantl 275 . 2 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℝ)
3 peano2re 7898 . . 3 (𝑁 ∈ ℝ → (𝑁 + 1) ∈ ℝ)
42, 3syl 14 . 2 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → (𝑁 + 1) ∈ ℝ)
5 eluzelre 9336 . . 3 (𝑃 ∈ (ℤ‘2) → 𝑃 ∈ ℝ)
6 reexpcl 10310 . . 3 ((𝑃 ∈ ℝ ∧ 𝑁 ∈ ℕ0) → (𝑃𝑁) ∈ ℝ)
75, 6sylan 281 . 2 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → (𝑃𝑁) ∈ ℝ)
82ltp1d 8688 . 2 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → 𝑁 < (𝑁 + 1))
9 uz2m1nn 9399 . . . . . . 7 (𝑃 ∈ (ℤ‘2) → (𝑃 − 1) ∈ ℕ)
109adantr 274 . . . . . 6 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → (𝑃 − 1) ∈ ℕ)
1110nnred 8733 . . . . 5 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → (𝑃 − 1) ∈ ℝ)
1211, 2remulcld 7796 . . . 4 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → ((𝑃 − 1) · 𝑁) ∈ ℝ)
13 peano2re 7898 . . . 4 (((𝑃 − 1) · 𝑁) ∈ ℝ → (((𝑃 − 1) · 𝑁) + 1) ∈ ℝ)
1412, 13syl 14 . . 3 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → (((𝑃 − 1) · 𝑁) + 1) ∈ ℝ)
15 1red 7781 . . . 4 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → 1 ∈ ℝ)
16 nn0ge0 9002 . . . . . 6 (𝑁 ∈ ℕ0 → 0 ≤ 𝑁)
1716adantl 275 . . . . 5 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → 0 ≤ 𝑁)
1810nnge1d 8763 . . . . 5 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → 1 ≤ (𝑃 − 1))
192, 11, 17, 18lemulge12d 8696 . . . 4 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → 𝑁 ≤ ((𝑃 − 1) · 𝑁))
202, 12, 15, 19leadd1dd 8321 . . 3 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → (𝑁 + 1) ≤ (((𝑃 − 1) · 𝑁) + 1))
215adantr 274 . . . 4 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → 𝑃 ∈ ℝ)
22 simpr 109 . . . 4 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℕ0)
23 eluzge2nn0 9365 . . . . . 6 (𝑃 ∈ (ℤ‘2) → 𝑃 ∈ ℕ0)
24 nn0ge0 9002 . . . . . 6 (𝑃 ∈ ℕ0 → 0 ≤ 𝑃)
2523, 24syl 14 . . . . 5 (𝑃 ∈ (ℤ‘2) → 0 ≤ 𝑃)
2625adantr 274 . . . 4 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → 0 ≤ 𝑃)
27 bernneq2 10413 . . . 4 ((𝑃 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ 0 ≤ 𝑃) → (((𝑃 − 1) · 𝑁) + 1) ≤ (𝑃𝑁))
2821, 22, 26, 27syl3anc 1216 . . 3 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → (((𝑃 − 1) · 𝑁) + 1) ≤ (𝑃𝑁))
294, 14, 7, 20, 28letrd 7886 . 2 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → (𝑁 + 1) ≤ (𝑃𝑁))
302, 4, 7, 8, 29ltletrd 8185 1 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → 𝑁 < (𝑃𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wcel 1480   class class class wbr 3929  cfv 5123  (class class class)co 5774  cr 7619  0cc0 7620  1c1 7621   + caddc 7623   · cmul 7625   < clt 7800  cle 7801  cmin 7933  cn 8720  2c2 8771  0cn0 8977  cuz 9326  cexp 10292
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-frec 6288  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433  df-inn 8721  df-2 8779  df-n0 8978  df-z 9055  df-uz 9327  df-seqfrec 10219  df-exp 10293
This theorem is referenced by:  resqrexlemcvg  10791  resqrexlemga  10795  pw2dvds  11844  cvgcmp2nlemabs  13227  trilpolemlt1  13234
  Copyright terms: Public domain W3C validator