Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  bezoutlemeu GIF version

Theorem bezoutlemeu 10603
 Description: Lemma for Bézout's identity. There is exactly one nonnegative integer meeting the greatest common divisor condition. (Contributed by Mario Carneiro and Jim Kingdon, 9-Jan-2022.)
Hypotheses
Ref Expression
bezoutlemgcd.1 (𝜑𝐴 ∈ ℤ)
bezoutlemgcd.2 (𝜑𝐵 ∈ ℤ)
bezoutlemgcd.3 (𝜑𝐷 ∈ ℕ0)
bezoutlemgcd.4 (𝜑 → ∀𝑧 ∈ ℤ (𝑧𝐷 ↔ (𝑧𝐴𝑧𝐵)))
Assertion
Ref Expression
bezoutlemeu (𝜑 → ∃!𝑑 ∈ ℕ0𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝐴𝑧𝐵)))
Distinct variable groups:   𝑧,𝐷   𝐴,𝑑,𝑧   𝐵,𝑑,𝑧   𝜑,𝑑
Allowed substitution hints:   𝜑(𝑧)   𝐷(𝑑)

Proof of Theorem bezoutlemeu
Dummy variables 𝑒 𝑤 𝑠 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bezoutlemgcd.1 . . 3 (𝜑𝐴 ∈ ℤ)
2 bezoutlemgcd.2 . . 3 (𝜑𝐵 ∈ ℤ)
3 bezoutlembi 10601 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝐴𝑧𝐵)) ∧ ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝑑 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))))
4 simpl 107 . . . . 5 ((∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝐴𝑧𝐵)) ∧ ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝑑 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) → ∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝐴𝑧𝐵)))
54reximi 2463 . . . 4 (∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝐴𝑧𝐵)) ∧ ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝑑 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) → ∃𝑑 ∈ ℕ0𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝐴𝑧𝐵)))
63, 5syl 14 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ∃𝑑 ∈ ℕ0𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝐴𝑧𝐵)))
71, 2, 6syl2anc 403 . 2 (𝜑 → ∃𝑑 ∈ ℕ0𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝐴𝑧𝐵)))
81ad2antrr 472 . . . . . 6 (((𝜑 ∧ (𝑑 ∈ ℕ0𝑒 ∈ ℕ0)) ∧ (∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝐴𝑧𝐵)) ∧ ∀𝑧 ∈ ℤ (𝑧𝑒 ↔ (𝑧𝐴𝑧𝐵)))) → 𝐴 ∈ ℤ)
92ad2antrr 472 . . . . . 6 (((𝜑 ∧ (𝑑 ∈ ℕ0𝑒 ∈ ℕ0)) ∧ (∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝐴𝑧𝐵)) ∧ ∀𝑧 ∈ ℤ (𝑧𝑒 ↔ (𝑧𝐴𝑧𝐵)))) → 𝐵 ∈ ℤ)
10 simplrl 502 . . . . . 6 (((𝜑 ∧ (𝑑 ∈ ℕ0𝑒 ∈ ℕ0)) ∧ (∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝐴𝑧𝐵)) ∧ ∀𝑧 ∈ ℤ (𝑧𝑒 ↔ (𝑧𝐴𝑧𝐵)))) → 𝑑 ∈ ℕ0)
11 simprl 498 . . . . . . 7 (((𝜑 ∧ (𝑑 ∈ ℕ0𝑒 ∈ ℕ0)) ∧ (∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝐴𝑧𝐵)) ∧ ∀𝑧 ∈ ℤ (𝑧𝑒 ↔ (𝑧𝐴𝑧𝐵)))) → ∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝐴𝑧𝐵)))
12 breq1 3808 . . . . . . . . 9 (𝑧 = 𝑤 → (𝑧𝑑𝑤𝑑))
13 breq1 3808 . . . . . . . . . 10 (𝑧 = 𝑤 → (𝑧𝐴𝑤𝐴))
14 breq1 3808 . . . . . . . . . 10 (𝑧 = 𝑤 → (𝑧𝐵𝑤𝐵))
1513, 14anbi12d 457 . . . . . . . . 9 (𝑧 = 𝑤 → ((𝑧𝐴𝑧𝐵) ↔ (𝑤𝐴𝑤𝐵)))
1612, 15bibi12d 233 . . . . . . . 8 (𝑧 = 𝑤 → ((𝑧𝑑 ↔ (𝑧𝐴𝑧𝐵)) ↔ (𝑤𝑑 ↔ (𝑤𝐴𝑤𝐵))))
1716cbvralv 2582 . . . . . . 7 (∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝐴𝑧𝐵)) ↔ ∀𝑤 ∈ ℤ (𝑤𝑑 ↔ (𝑤𝐴𝑤𝐵)))
1811, 17sylib 120 . . . . . 6 (((𝜑 ∧ (𝑑 ∈ ℕ0𝑒 ∈ ℕ0)) ∧ (∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝐴𝑧𝐵)) ∧ ∀𝑧 ∈ ℤ (𝑧𝑒 ↔ (𝑧𝐴𝑧𝐵)))) → ∀𝑤 ∈ ℤ (𝑤𝑑 ↔ (𝑤𝐴𝑤𝐵)))
19 simplrr 503 . . . . . 6 (((𝜑 ∧ (𝑑 ∈ ℕ0𝑒 ∈ ℕ0)) ∧ (∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝐴𝑧𝐵)) ∧ ∀𝑧 ∈ ℤ (𝑧𝑒 ↔ (𝑧𝐴𝑧𝐵)))) → 𝑒 ∈ ℕ0)
20 simprr 499 . . . . . . 7 (((𝜑 ∧ (𝑑 ∈ ℕ0𝑒 ∈ ℕ0)) ∧ (∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝐴𝑧𝐵)) ∧ ∀𝑧 ∈ ℤ (𝑧𝑒 ↔ (𝑧𝐴𝑧𝐵)))) → ∀𝑧 ∈ ℤ (𝑧𝑒 ↔ (𝑧𝐴𝑧𝐵)))
21 breq1 3808 . . . . . . . . 9 (𝑧 = 𝑤 → (𝑧𝑒𝑤𝑒))
2221, 15bibi12d 233 . . . . . . . 8 (𝑧 = 𝑤 → ((𝑧𝑒 ↔ (𝑧𝐴𝑧𝐵)) ↔ (𝑤𝑒 ↔ (𝑤𝐴𝑤𝐵))))
2322cbvralv 2582 . . . . . . 7 (∀𝑧 ∈ ℤ (𝑧𝑒 ↔ (𝑧𝐴𝑧𝐵)) ↔ ∀𝑤 ∈ ℤ (𝑤𝑒 ↔ (𝑤𝐴𝑤𝐵)))
2420, 23sylib 120 . . . . . 6 (((𝜑 ∧ (𝑑 ∈ ℕ0𝑒 ∈ ℕ0)) ∧ (∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝐴𝑧𝐵)) ∧ ∀𝑧 ∈ ℤ (𝑧𝑒 ↔ (𝑧𝐴𝑧𝐵)))) → ∀𝑤 ∈ ℤ (𝑤𝑒 ↔ (𝑤𝐴𝑤𝐵)))
258, 9, 10, 18, 19, 24bezoutlemmo 10602 . . . . 5 (((𝜑 ∧ (𝑑 ∈ ℕ0𝑒 ∈ ℕ0)) ∧ (∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝐴𝑧𝐵)) ∧ ∀𝑧 ∈ ℤ (𝑧𝑒 ↔ (𝑧𝐴𝑧𝐵)))) → 𝑑 = 𝑒)
2625ex 113 . . . 4 ((𝜑 ∧ (𝑑 ∈ ℕ0𝑒 ∈ ℕ0)) → ((∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝐴𝑧𝐵)) ∧ ∀𝑧 ∈ ℤ (𝑧𝑒 ↔ (𝑧𝐴𝑧𝐵))) → 𝑑 = 𝑒))
2726ralrimivva 2448 . . 3 (𝜑 → ∀𝑑 ∈ ℕ0𝑒 ∈ ℕ0 ((∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝐴𝑧𝐵)) ∧ ∀𝑧 ∈ ℤ (𝑧𝑒 ↔ (𝑧𝐴𝑧𝐵))) → 𝑑 = 𝑒))
28 breq2 3809 . . . . . 6 (𝑑 = 𝑒 → (𝑧𝑑𝑧𝑒))
2928bibi1d 231 . . . . 5 (𝑑 = 𝑒 → ((𝑧𝑑 ↔ (𝑧𝐴𝑧𝐵)) ↔ (𝑧𝑒 ↔ (𝑧𝐴𝑧𝐵))))
3029ralbidv 2373 . . . 4 (𝑑 = 𝑒 → (∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝐴𝑧𝐵)) ↔ ∀𝑧 ∈ ℤ (𝑧𝑒 ↔ (𝑧𝐴𝑧𝐵))))
3130rmo4 2794 . . 3 (∃*𝑑 ∈ ℕ0𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝐴𝑧𝐵)) ↔ ∀𝑑 ∈ ℕ0𝑒 ∈ ℕ0 ((∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝐴𝑧𝐵)) ∧ ∀𝑧 ∈ ℤ (𝑧𝑒 ↔ (𝑧𝐴𝑧𝐵))) → 𝑑 = 𝑒))
3227, 31sylibr 132 . 2 (𝜑 → ∃*𝑑 ∈ ℕ0𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝐴𝑧𝐵)))
33 reu5 2571 . 2 (∃!𝑑 ∈ ℕ0𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝐴𝑧𝐵)) ↔ (∃𝑑 ∈ ℕ0𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝐴𝑧𝐵)) ∧ ∃*𝑑 ∈ ℕ0𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝐴𝑧𝐵))))
347, 32, 33sylanbrc 408 1 (𝜑 → ∃!𝑑 ∈ ℕ0𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝐴𝑧𝐵)))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 102   ↔ wb 103   = wceq 1285   ∈ wcel 1434  ∀wral 2353  ∃wrex 2354  ∃!wreu 2355  ∃*wrmo 2356   class class class wbr 3805  (class class class)co 5563   + caddc 7098   · cmul 7100  ℕ0cn0 8407  ℤcz 8484   ∥ cdvds 10403 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-coll 3913  ax-sep 3916  ax-nul 3924  ax-pow 3968  ax-pr 3992  ax-un 4216  ax-setind 4308  ax-iinf 4357  ax-cnex 7181  ax-resscn 7182  ax-1cn 7183  ax-1re 7184  ax-icn 7185  ax-addcl 7186  ax-addrcl 7187  ax-mulcl 7188  ax-mulrcl 7189  ax-addcom 7190  ax-mulcom 7191  ax-addass 7192  ax-mulass 7193  ax-distr 7194  ax-i2m1 7195  ax-0lt1 7196  ax-1rid 7197  ax-0id 7198  ax-rnegex 7199  ax-precex 7200  ax-cnre 7201  ax-pre-ltirr 7202  ax-pre-ltwlin 7203  ax-pre-lttrn 7204  ax-pre-apti 7205  ax-pre-ltadd 7206  ax-pre-mulgt0 7207  ax-pre-mulext 7208  ax-arch 7209  ax-caucvg 7210 This theorem depends on definitions:  df-bi 115  df-dc 777  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-nel 2345  df-ral 2358  df-rex 2359  df-reu 2360  df-rmo 2361  df-rab 2362  df-v 2612  df-sbc 2825  df-csb 2918  df-dif 2984  df-un 2986  df-in 2988  df-ss 2995  df-nul 3268  df-if 3369  df-pw 3402  df-sn 3422  df-pr 3423  df-op 3425  df-uni 3622  df-int 3657  df-iun 3700  df-br 3806  df-opab 3860  df-mpt 3861  df-tr 3896  df-id 4076  df-po 4079  df-iso 4080  df-iord 4149  df-on 4151  df-ilim 4152  df-suc 4154  df-iom 4360  df-xp 4397  df-rel 4398  df-cnv 4399  df-co 4400  df-dm 4401  df-rn 4402  df-res 4403  df-ima 4404  df-iota 4917  df-fun 4954  df-fn 4955  df-f 4956  df-f1 4957  df-fo 4958  df-f1o 4959  df-fv 4960  df-riota 5519  df-ov 5566  df-oprab 5567  df-mpt2 5568  df-1st 5818  df-2nd 5819  df-recs 5974  df-frec 6060  df-pnf 7269  df-mnf 7270  df-xr 7271  df-ltxr 7272  df-le 7273  df-sub 7400  df-neg 7401  df-reap 7794  df-ap 7801  df-div 7880  df-inn 8159  df-2 8217  df-3 8218  df-4 8219  df-n0 8408  df-z 8485  df-uz 8753  df-q 8838  df-rp 8868  df-fz 9158  df-fl 9404  df-mod 9457  df-iseq 9574  df-iexp 9625  df-cj 9930  df-re 9931  df-im 9932  df-rsqrt 10085  df-abs 10086  df-dvds 10404 This theorem is referenced by:  dfgcd3  10606  bezout  10607
 Copyright terms: Public domain W3C validator