ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bezoutlemle GIF version

Theorem bezoutlemle 10604
Description: Lemma for Bézout's identity. The number satisfying the greatest common divisor condition is the largest number which divides both 𝐴 and 𝐵. (Contributed by Mario Carneiro and Jim Kingdon, 9-Jan-2022.)
Hypotheses
Ref Expression
bezoutlemgcd.1 (𝜑𝐴 ∈ ℤ)
bezoutlemgcd.2 (𝜑𝐵 ∈ ℤ)
bezoutlemgcd.3 (𝜑𝐷 ∈ ℕ0)
bezoutlemgcd.4 (𝜑 → ∀𝑧 ∈ ℤ (𝑧𝐷 ↔ (𝑧𝐴𝑧𝐵)))
bezoutlemgcd.5 (𝜑 → ¬ (𝐴 = 0 ∧ 𝐵 = 0))
Assertion
Ref Expression
bezoutlemle (𝜑 → ∀𝑧 ∈ ℤ ((𝑧𝐴𝑧𝐵) → 𝑧𝐷))
Distinct variable groups:   𝑧,𝐷   𝑧,𝐴   𝑧,𝐵   𝜑,𝑧

Proof of Theorem bezoutlemle
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 simpr 108 . . . . 5 (((𝜑𝑧 ∈ ℤ) ∧ (𝑧𝐴𝑧𝐵)) → (𝑧𝐴𝑧𝐵))
2 breq1 3808 . . . . . . . 8 (𝑧 = 𝑤 → (𝑧𝐷𝑤𝐷))
3 breq1 3808 . . . . . . . . 9 (𝑧 = 𝑤 → (𝑧𝐴𝑤𝐴))
4 breq1 3808 . . . . . . . . 9 (𝑧 = 𝑤 → (𝑧𝐵𝑤𝐵))
53, 4anbi12d 457 . . . . . . . 8 (𝑧 = 𝑤 → ((𝑧𝐴𝑧𝐵) ↔ (𝑤𝐴𝑤𝐵)))
62, 5bibi12d 233 . . . . . . 7 (𝑧 = 𝑤 → ((𝑧𝐷 ↔ (𝑧𝐴𝑧𝐵)) ↔ (𝑤𝐷 ↔ (𝑤𝐴𝑤𝐵))))
7 equcom 1635 . . . . . . 7 (𝑧 = 𝑤𝑤 = 𝑧)
8 bicom 138 . . . . . . 7 (((𝑧𝐷 ↔ (𝑧𝐴𝑧𝐵)) ↔ (𝑤𝐷 ↔ (𝑤𝐴𝑤𝐵))) ↔ ((𝑤𝐷 ↔ (𝑤𝐴𝑤𝐵)) ↔ (𝑧𝐷 ↔ (𝑧𝐴𝑧𝐵))))
96, 7, 83imtr3i 198 . . . . . 6 (𝑤 = 𝑧 → ((𝑤𝐷 ↔ (𝑤𝐴𝑤𝐵)) ↔ (𝑧𝐷 ↔ (𝑧𝐴𝑧𝐵))))
10 bezoutlemgcd.4 . . . . . . . 8 (𝜑 → ∀𝑧 ∈ ℤ (𝑧𝐷 ↔ (𝑧𝐴𝑧𝐵)))
116cbvralv 2582 . . . . . . . 8 (∀𝑧 ∈ ℤ (𝑧𝐷 ↔ (𝑧𝐴𝑧𝐵)) ↔ ∀𝑤 ∈ ℤ (𝑤𝐷 ↔ (𝑤𝐴𝑤𝐵)))
1210, 11sylib 120 . . . . . . 7 (𝜑 → ∀𝑤 ∈ ℤ (𝑤𝐷 ↔ (𝑤𝐴𝑤𝐵)))
1312ad2antrr 472 . . . . . 6 (((𝜑𝑧 ∈ ℤ) ∧ (𝑧𝐴𝑧𝐵)) → ∀𝑤 ∈ ℤ (𝑤𝐷 ↔ (𝑤𝐴𝑤𝐵)))
14 simplr 497 . . . . . 6 (((𝜑𝑧 ∈ ℤ) ∧ (𝑧𝐴𝑧𝐵)) → 𝑧 ∈ ℤ)
159, 13, 14rspcdva 2715 . . . . 5 (((𝜑𝑧 ∈ ℤ) ∧ (𝑧𝐴𝑧𝐵)) → (𝑧𝐷 ↔ (𝑧𝐴𝑧𝐵)))
161, 15mpbird 165 . . . 4 (((𝜑𝑧 ∈ ℤ) ∧ (𝑧𝐴𝑧𝐵)) → 𝑧𝐷)
17 bezoutlemgcd.3 . . . . . . 7 (𝜑𝐷 ∈ ℕ0)
1817ad2antrr 472 . . . . . 6 (((𝜑𝑧 ∈ ℤ) ∧ (𝑧𝐴𝑧𝐵)) → 𝐷 ∈ ℕ0)
19 bezoutlemgcd.5 . . . . . . . . 9 (𝜑 → ¬ (𝐴 = 0 ∧ 𝐵 = 0))
2019ad2antrr 472 . . . . . . . 8 (((𝜑𝑧 ∈ ℤ) ∧ (𝑧𝐴𝑧𝐵)) → ¬ (𝐴 = 0 ∧ 𝐵 = 0))
21 breq1 3808 . . . . . . . . . . . 12 (𝑧 = 0 → (𝑧𝐷 ↔ 0 ∥ 𝐷))
22 breq1 3808 . . . . . . . . . . . . 13 (𝑧 = 0 → (𝑧𝐴 ↔ 0 ∥ 𝐴))
23 breq1 3808 . . . . . . . . . . . . 13 (𝑧 = 0 → (𝑧𝐵 ↔ 0 ∥ 𝐵))
2422, 23anbi12d 457 . . . . . . . . . . . 12 (𝑧 = 0 → ((𝑧𝐴𝑧𝐵) ↔ (0 ∥ 𝐴 ∧ 0 ∥ 𝐵)))
2521, 24bibi12d 233 . . . . . . . . . . 11 (𝑧 = 0 → ((𝑧𝐷 ↔ (𝑧𝐴𝑧𝐵)) ↔ (0 ∥ 𝐷 ↔ (0 ∥ 𝐴 ∧ 0 ∥ 𝐵))))
26 0zd 8496 . . . . . . . . . . 11 (𝜑 → 0 ∈ ℤ)
2725, 10, 26rspcdva 2715 . . . . . . . . . 10 (𝜑 → (0 ∥ 𝐷 ↔ (0 ∥ 𝐴 ∧ 0 ∥ 𝐵)))
2827ad2antrr 472 . . . . . . . . 9 (((𝜑𝑧 ∈ ℤ) ∧ (𝑧𝐴𝑧𝐵)) → (0 ∥ 𝐷 ↔ (0 ∥ 𝐴 ∧ 0 ∥ 𝐵)))
2918nn0zd 8600 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℤ) ∧ (𝑧𝐴𝑧𝐵)) → 𝐷 ∈ ℤ)
30 0dvds 10423 . . . . . . . . . 10 (𝐷 ∈ ℤ → (0 ∥ 𝐷𝐷 = 0))
3129, 30syl 14 . . . . . . . . 9 (((𝜑𝑧 ∈ ℤ) ∧ (𝑧𝐴𝑧𝐵)) → (0 ∥ 𝐷𝐷 = 0))
32 bezoutlemgcd.1 . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℤ)
3332ad2antrr 472 . . . . . . . . . . 11 (((𝜑𝑧 ∈ ℤ) ∧ (𝑧𝐴𝑧𝐵)) → 𝐴 ∈ ℤ)
34 0dvds 10423 . . . . . . . . . . 11 (𝐴 ∈ ℤ → (0 ∥ 𝐴𝐴 = 0))
3533, 34syl 14 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℤ) ∧ (𝑧𝐴𝑧𝐵)) → (0 ∥ 𝐴𝐴 = 0))
36 bezoutlemgcd.2 . . . . . . . . . . . 12 (𝜑𝐵 ∈ ℤ)
3736ad2antrr 472 . . . . . . . . . . 11 (((𝜑𝑧 ∈ ℤ) ∧ (𝑧𝐴𝑧𝐵)) → 𝐵 ∈ ℤ)
38 0dvds 10423 . . . . . . . . . . 11 (𝐵 ∈ ℤ → (0 ∥ 𝐵𝐵 = 0))
3937, 38syl 14 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℤ) ∧ (𝑧𝐴𝑧𝐵)) → (0 ∥ 𝐵𝐵 = 0))
4035, 39anbi12d 457 . . . . . . . . 9 (((𝜑𝑧 ∈ ℤ) ∧ (𝑧𝐴𝑧𝐵)) → ((0 ∥ 𝐴 ∧ 0 ∥ 𝐵) ↔ (𝐴 = 0 ∧ 𝐵 = 0)))
4128, 31, 403bitr3d 216 . . . . . . . 8 (((𝜑𝑧 ∈ ℤ) ∧ (𝑧𝐴𝑧𝐵)) → (𝐷 = 0 ↔ (𝐴 = 0 ∧ 𝐵 = 0)))
4220, 41mtbird 631 . . . . . . 7 (((𝜑𝑧 ∈ ℤ) ∧ (𝑧𝐴𝑧𝐵)) → ¬ 𝐷 = 0)
4342neqned 2256 . . . . . 6 (((𝜑𝑧 ∈ ℤ) ∧ (𝑧𝐴𝑧𝐵)) → 𝐷 ≠ 0)
44 elnnne0 8421 . . . . . 6 (𝐷 ∈ ℕ ↔ (𝐷 ∈ ℕ0𝐷 ≠ 0))
4518, 43, 44sylanbrc 408 . . . . 5 (((𝜑𝑧 ∈ ℤ) ∧ (𝑧𝐴𝑧𝐵)) → 𝐷 ∈ ℕ)
46 dvdsle 10452 . . . . 5 ((𝑧 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (𝑧𝐷𝑧𝐷))
4714, 45, 46syl2anc 403 . . . 4 (((𝜑𝑧 ∈ ℤ) ∧ (𝑧𝐴𝑧𝐵)) → (𝑧𝐷𝑧𝐷))
4816, 47mpd 13 . . 3 (((𝜑𝑧 ∈ ℤ) ∧ (𝑧𝐴𝑧𝐵)) → 𝑧𝐷)
4948ex 113 . 2 ((𝜑𝑧 ∈ ℤ) → ((𝑧𝐴𝑧𝐵) → 𝑧𝐷))
5049ralrimiva 2439 1 (𝜑 → ∀𝑧 ∈ ℤ ((𝑧𝐴𝑧𝐵) → 𝑧𝐷))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 102  wb 103   = wceq 1285  wcel 1434  wne 2249  wral 2353   class class class wbr 3805  0cc0 7095  cle 7268  cn 8158  0cn0 8407  cz 8484  cdvds 10403
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-sep 3916  ax-pow 3968  ax-pr 3992  ax-un 4216  ax-setind 4308  ax-cnex 7181  ax-resscn 7182  ax-1cn 7183  ax-1re 7184  ax-icn 7185  ax-addcl 7186  ax-addrcl 7187  ax-mulcl 7188  ax-mulrcl 7189  ax-addcom 7190  ax-mulcom 7191  ax-addass 7192  ax-mulass 7193  ax-distr 7194  ax-i2m1 7195  ax-0lt1 7196  ax-1rid 7197  ax-0id 7198  ax-rnegex 7199  ax-precex 7200  ax-cnre 7201  ax-pre-ltirr 7202  ax-pre-ltwlin 7203  ax-pre-lttrn 7204  ax-pre-apti 7205  ax-pre-ltadd 7206  ax-pre-mulgt0 7207  ax-pre-mulext 7208
This theorem depends on definitions:  df-bi 115  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-nel 2345  df-ral 2358  df-rex 2359  df-reu 2360  df-rmo 2361  df-rab 2362  df-v 2612  df-sbc 2825  df-csb 2918  df-dif 2984  df-un 2986  df-in 2988  df-ss 2995  df-nul 3268  df-pw 3402  df-sn 3422  df-pr 3423  df-op 3425  df-uni 3622  df-int 3657  df-iun 3700  df-br 3806  df-opab 3860  df-mpt 3861  df-id 4076  df-po 4079  df-iso 4080  df-xp 4397  df-rel 4398  df-cnv 4399  df-co 4400  df-dm 4401  df-rn 4402  df-res 4403  df-ima 4404  df-iota 4917  df-fun 4954  df-fn 4955  df-f 4956  df-fv 4960  df-riota 5519  df-ov 5566  df-oprab 5567  df-mpt2 5568  df-1st 5818  df-2nd 5819  df-pnf 7269  df-mnf 7270  df-xr 7271  df-ltxr 7272  df-le 7273  df-sub 7400  df-neg 7401  df-reap 7794  df-ap 7801  df-div 7880  df-inn 8159  df-n0 8408  df-z 8485  df-q 8838  df-dvds 10404
This theorem is referenced by:  bezoutlemsup  10605
  Copyright terms: Public domain W3C validator