![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > bezoutlemmo | GIF version |
Description: Lemma for Bézout's identity. There is at most one nonnegative integer meeting the greatest common divisor condition. (Contributed by Mario Carneiro and Jim Kingdon, 9-Jan-2022.) |
Ref | Expression |
---|---|
bezoutlemgcd.1 | ⊢ (𝜑 → 𝐴 ∈ ℤ) |
bezoutlemgcd.2 | ⊢ (𝜑 → 𝐵 ∈ ℤ) |
bezoutlemgcd.3 | ⊢ (𝜑 → 𝐷 ∈ ℕ0) |
bezoutlemgcd.4 | ⊢ (𝜑 → ∀𝑧 ∈ ℤ (𝑧 ∥ 𝐷 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵))) |
bezoutlemmo.5 | ⊢ (𝜑 → 𝐸 ∈ ℕ0) |
bezoutlemmo.6 | ⊢ (𝜑 → ∀𝑧 ∈ ℤ (𝑧 ∥ 𝐸 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵))) |
Ref | Expression |
---|---|
bezoutlemmo | ⊢ (𝜑 → 𝐷 = 𝐸) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bezoutlemgcd.3 | . 2 ⊢ (𝜑 → 𝐷 ∈ ℕ0) | |
2 | bezoutlemmo.5 | . 2 ⊢ (𝜑 → 𝐸 ∈ ℕ0) | |
3 | 1 | nn0zd 8584 | . . . 4 ⊢ (𝜑 → 𝐷 ∈ ℤ) |
4 | iddvds 10400 | . . . 4 ⊢ (𝐷 ∈ ℤ → 𝐷 ∥ 𝐷) | |
5 | 3, 4 | syl 14 | . . 3 ⊢ (𝜑 → 𝐷 ∥ 𝐷) |
6 | breq1 3809 | . . . . 5 ⊢ (𝑧 = 𝐷 → (𝑧 ∥ 𝐷 ↔ 𝐷 ∥ 𝐷)) | |
7 | breq1 3809 | . . . . 5 ⊢ (𝑧 = 𝐷 → (𝑧 ∥ 𝐸 ↔ 𝐷 ∥ 𝐸)) | |
8 | 6, 7 | bibi12d 233 | . . . 4 ⊢ (𝑧 = 𝐷 → ((𝑧 ∥ 𝐷 ↔ 𝑧 ∥ 𝐸) ↔ (𝐷 ∥ 𝐷 ↔ 𝐷 ∥ 𝐸))) |
9 | bezoutlemgcd.4 | . . . . . 6 ⊢ (𝜑 → ∀𝑧 ∈ ℤ (𝑧 ∥ 𝐷 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵))) | |
10 | bezoutlemmo.6 | . . . . . 6 ⊢ (𝜑 → ∀𝑧 ∈ ℤ (𝑧 ∥ 𝐸 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵))) | |
11 | r19.26 2490 | . . . . . 6 ⊢ (∀𝑧 ∈ ℤ ((𝑧 ∥ 𝐷 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)) ∧ (𝑧 ∥ 𝐸 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵))) ↔ (∀𝑧 ∈ ℤ (𝑧 ∥ 𝐷 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)) ∧ ∀𝑧 ∈ ℤ (𝑧 ∥ 𝐸 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)))) | |
12 | 9, 10, 11 | sylanbrc 408 | . . . . 5 ⊢ (𝜑 → ∀𝑧 ∈ ℤ ((𝑧 ∥ 𝐷 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)) ∧ (𝑧 ∥ 𝐸 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)))) |
13 | biantr 894 | . . . . . 6 ⊢ (((𝑧 ∥ 𝐷 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)) ∧ (𝑧 ∥ 𝐸 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵))) → (𝑧 ∥ 𝐷 ↔ 𝑧 ∥ 𝐸)) | |
14 | 13 | ralimi 2431 | . . . . 5 ⊢ (∀𝑧 ∈ ℤ ((𝑧 ∥ 𝐷 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)) ∧ (𝑧 ∥ 𝐸 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵))) → ∀𝑧 ∈ ℤ (𝑧 ∥ 𝐷 ↔ 𝑧 ∥ 𝐸)) |
15 | 12, 14 | syl 14 | . . . 4 ⊢ (𝜑 → ∀𝑧 ∈ ℤ (𝑧 ∥ 𝐷 ↔ 𝑧 ∥ 𝐸)) |
16 | 8, 15, 3 | rspcdva 2716 | . . 3 ⊢ (𝜑 → (𝐷 ∥ 𝐷 ↔ 𝐷 ∥ 𝐸)) |
17 | 5, 16 | mpbid 145 | . 2 ⊢ (𝜑 → 𝐷 ∥ 𝐸) |
18 | 2 | nn0zd 8584 | . . . 4 ⊢ (𝜑 → 𝐸 ∈ ℤ) |
19 | iddvds 10400 | . . . 4 ⊢ (𝐸 ∈ ℤ → 𝐸 ∥ 𝐸) | |
20 | 18, 19 | syl 14 | . . 3 ⊢ (𝜑 → 𝐸 ∥ 𝐸) |
21 | breq1 3809 | . . . . 5 ⊢ (𝑧 = 𝐸 → (𝑧 ∥ 𝐷 ↔ 𝐸 ∥ 𝐷)) | |
22 | breq1 3809 | . . . . 5 ⊢ (𝑧 = 𝐸 → (𝑧 ∥ 𝐸 ↔ 𝐸 ∥ 𝐸)) | |
23 | 21, 22 | bibi12d 233 | . . . 4 ⊢ (𝑧 = 𝐸 → ((𝑧 ∥ 𝐷 ↔ 𝑧 ∥ 𝐸) ↔ (𝐸 ∥ 𝐷 ↔ 𝐸 ∥ 𝐸))) |
24 | 23, 15, 18 | rspcdva 2716 | . . 3 ⊢ (𝜑 → (𝐸 ∥ 𝐷 ↔ 𝐸 ∥ 𝐸)) |
25 | 20, 24 | mpbird 165 | . 2 ⊢ (𝜑 → 𝐸 ∥ 𝐷) |
26 | dvdseq 10440 | . 2 ⊢ (((𝐷 ∈ ℕ0 ∧ 𝐸 ∈ ℕ0) ∧ (𝐷 ∥ 𝐸 ∧ 𝐸 ∥ 𝐷)) → 𝐷 = 𝐸) | |
27 | 1, 2, 17, 25, 26 | syl22anc 1171 | 1 ⊢ (𝜑 → 𝐷 = 𝐸) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 ↔ wb 103 = wceq 1285 ∈ wcel 1434 ∀wral 2353 class class class wbr 3806 ℕ0cn0 8391 ℤcz 8468 ∥ cdvds 10387 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 577 ax-in2 578 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-13 1445 ax-14 1446 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2065 ax-coll 3914 ax-sep 3917 ax-nul 3925 ax-pow 3969 ax-pr 3993 ax-un 4217 ax-setind 4309 ax-iinf 4358 ax-cnex 7165 ax-resscn 7166 ax-1cn 7167 ax-1re 7168 ax-icn 7169 ax-addcl 7170 ax-addrcl 7171 ax-mulcl 7172 ax-mulrcl 7173 ax-addcom 7174 ax-mulcom 7175 ax-addass 7176 ax-mulass 7177 ax-distr 7178 ax-i2m1 7179 ax-0lt1 7180 ax-1rid 7181 ax-0id 7182 ax-rnegex 7183 ax-precex 7184 ax-cnre 7185 ax-pre-ltirr 7186 ax-pre-ltwlin 7187 ax-pre-lttrn 7188 ax-pre-apti 7189 ax-pre-ltadd 7190 ax-pre-mulgt0 7191 ax-pre-mulext 7192 ax-arch 7193 ax-caucvg 7194 |
This theorem depends on definitions: df-bi 115 df-dc 777 df-3or 921 df-3an 922 df-tru 1288 df-fal 1291 df-nf 1391 df-sb 1688 df-eu 1946 df-mo 1947 df-clab 2070 df-cleq 2076 df-clel 2079 df-nfc 2212 df-ne 2250 df-nel 2345 df-ral 2358 df-rex 2359 df-reu 2360 df-rmo 2361 df-rab 2362 df-v 2612 df-sbc 2826 df-csb 2919 df-dif 2985 df-un 2987 df-in 2989 df-ss 2996 df-nul 3269 df-if 3370 df-pw 3403 df-sn 3423 df-pr 3424 df-op 3426 df-uni 3623 df-int 3658 df-iun 3701 df-br 3807 df-opab 3861 df-mpt 3862 df-tr 3897 df-id 4077 df-po 4080 df-iso 4081 df-iord 4150 df-on 4152 df-ilim 4153 df-suc 4155 df-iom 4361 df-xp 4398 df-rel 4399 df-cnv 4400 df-co 4401 df-dm 4402 df-rn 4403 df-res 4404 df-ima 4405 df-iota 4918 df-fun 4955 df-fn 4956 df-f 4957 df-f1 4958 df-fo 4959 df-f1o 4960 df-fv 4961 df-riota 5520 df-ov 5567 df-oprab 5568 df-mpt2 5569 df-1st 5819 df-2nd 5820 df-recs 5975 df-frec 6061 df-pnf 7253 df-mnf 7254 df-xr 7255 df-ltxr 7256 df-le 7257 df-sub 7384 df-neg 7385 df-reap 7778 df-ap 7785 df-div 7864 df-inn 8143 df-2 8201 df-3 8202 df-4 8203 df-n0 8392 df-z 8469 df-uz 8737 df-q 8822 df-rp 8852 df-iseq 9558 df-iexp 9609 df-cj 9914 df-re 9915 df-im 9916 df-rsqrt 10069 df-abs 10070 df-dvds 10388 |
This theorem is referenced by: bezoutlemeu 10587 |
Copyright terms: Public domain | W3C validator |