ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bezoutlemnewy GIF version

Theorem bezoutlemnewy 10592
Description: Lemma for Bézout's identity. The is-bezout predicate holds for (𝑦 mod 𝑊). (Contributed by Jim Kingdon, 6-Jan-2022.)
Hypotheses
Ref Expression
bezoutlemstep.is-bezout (𝜑 ↔ ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝑟 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)))
bezoutlemstep.a (𝜃𝐴 ∈ ℕ0)
bezoutlemstep.b (𝜃𝐵 ∈ ℕ0)
bezoutlemstep.w (𝜃𝑊 ∈ ℕ)
bezoutlemstep.y-is-bezout (𝜃 → [𝑦 / 𝑟]𝜑)
bezoutlemstep.y-nn0 (𝜃𝑦 ∈ ℕ0)
bezoutlemstep.w-is-bezout (𝜃[𝑊 / 𝑟]𝜑)
Assertion
Ref Expression
bezoutlemnewy (𝜃[(𝑦 mod 𝑊) / 𝑟]𝜑)
Distinct variable groups:   𝐴,𝑠,𝑟,𝑡   𝐵,𝑠,𝑟,𝑡   𝑊,𝑠,𝑟,𝑡   𝑦,𝑠,𝑡   𝜑,𝑠,𝑡   𝜃,𝑠,𝑡   𝑦,𝑟
Allowed substitution hints:   𝜑(𝑦,𝑟)   𝜃(𝑦,𝑟)   𝐴(𝑦)   𝐵(𝑦)   𝑊(𝑦)

Proof of Theorem bezoutlemnewy
Dummy variables 𝑗 𝑘 𝑞 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bezoutlemstep.w-is-bezout . . 3 (𝜃[𝑊 / 𝑟]𝜑)
2 bezoutlemstep.is-bezout . . . . 5 (𝜑 ↔ ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝑟 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)))
32sbcbii 2882 . . . 4 ([𝑊 / 𝑟]𝜑[𝑊 / 𝑟]𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝑟 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)))
4 bezoutlemstep.w . . . . 5 (𝜃𝑊 ∈ ℕ)
5 eqeq1 2089 . . . . . . 7 (𝑟 = 𝑊 → (𝑟 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)) ↔ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))))
652rexbidv 2396 . . . . . 6 (𝑟 = 𝑊 → (∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝑟 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)) ↔ ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))))
76sbcieg 2855 . . . . 5 (𝑊 ∈ ℕ → ([𝑊 / 𝑟]𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝑟 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)) ↔ ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))))
84, 7syl 14 . . . 4 (𝜃 → ([𝑊 / 𝑟]𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝑟 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)) ↔ ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))))
93, 8syl5bb 190 . . 3 (𝜃 → ([𝑊 / 𝑟]𝜑 ↔ ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))))
101, 9mpbid 145 . 2 (𝜃 → ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)))
11 bezoutlemstep.y-is-bezout . . . . . . 7 (𝜃 → [𝑦 / 𝑟]𝜑)
12 oveq2 5571 . . . . . . . . . . . . 13 (𝑠 = 𝑢 → (𝐴 · 𝑠) = (𝐴 · 𝑢))
1312oveq1d 5578 . . . . . . . . . . . 12 (𝑠 = 𝑢 → ((𝐴 · 𝑠) + (𝐵 · 𝑡)) = ((𝐴 · 𝑢) + (𝐵 · 𝑡)))
1413eqeq2d 2094 . . . . . . . . . . 11 (𝑠 = 𝑢 → (𝑟 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)) ↔ 𝑟 = ((𝐴 · 𝑢) + (𝐵 · 𝑡))))
15 oveq2 5571 . . . . . . . . . . . . 13 (𝑡 = 𝑣 → (𝐵 · 𝑡) = (𝐵 · 𝑣))
1615oveq2d 5579 . . . . . . . . . . . 12 (𝑡 = 𝑣 → ((𝐴 · 𝑢) + (𝐵 · 𝑡)) = ((𝐴 · 𝑢) + (𝐵 · 𝑣)))
1716eqeq2d 2094 . . . . . . . . . . 11 (𝑡 = 𝑣 → (𝑟 = ((𝐴 · 𝑢) + (𝐵 · 𝑡)) ↔ 𝑟 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))))
1814, 17cbvrex2v 2591 . . . . . . . . . 10 (∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝑟 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)) ↔ ∃𝑢 ∈ ℤ ∃𝑣 ∈ ℤ 𝑟 = ((𝐴 · 𝑢) + (𝐵 · 𝑣)))
192, 18bitri 182 . . . . . . . . 9 (𝜑 ↔ ∃𝑢 ∈ ℤ ∃𝑣 ∈ ℤ 𝑟 = ((𝐴 · 𝑢) + (𝐵 · 𝑣)))
2019sbbii 1690 . . . . . . . 8 ([𝑦 / 𝑟]𝜑 ↔ [𝑦 / 𝑟]∃𝑢 ∈ ℤ ∃𝑣 ∈ ℤ 𝑟 = ((𝐴 · 𝑢) + (𝐵 · 𝑣)))
21 nfv 1462 . . . . . . . . 9 𝑟𝑢 ∈ ℤ ∃𝑣 ∈ ℤ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))
22 eqeq1 2089 . . . . . . . . . 10 (𝑟 = 𝑦 → (𝑟 = ((𝐴 · 𝑢) + (𝐵 · 𝑣)) ↔ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))))
23222rexbidv 2396 . . . . . . . . 9 (𝑟 = 𝑦 → (∃𝑢 ∈ ℤ ∃𝑣 ∈ ℤ 𝑟 = ((𝐴 · 𝑢) + (𝐵 · 𝑣)) ↔ ∃𝑢 ∈ ℤ ∃𝑣 ∈ ℤ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))))
2421, 23sbie 1716 . . . . . . . 8 ([𝑦 / 𝑟]∃𝑢 ∈ ℤ ∃𝑣 ∈ ℤ 𝑟 = ((𝐴 · 𝑢) + (𝐵 · 𝑣)) ↔ ∃𝑢 ∈ ℤ ∃𝑣 ∈ ℤ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣)))
2520, 24bitri 182 . . . . . . 7 ([𝑦 / 𝑟]𝜑 ↔ ∃𝑢 ∈ ℤ ∃𝑣 ∈ ℤ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣)))
2611, 25sylib 120 . . . . . 6 (𝜃 → ∃𝑢 ∈ ℤ ∃𝑣 ∈ ℤ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣)))
2726ad2antrr 472 . . . . 5 (((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) → ∃𝑢 ∈ ℤ ∃𝑣 ∈ ℤ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣)))
28 bezoutlemstep.y-nn0 . . . . . . . . . . 11 (𝜃𝑦 ∈ ℕ0)
2928ad4antr 478 . . . . . . . . . 10 (((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) → 𝑦 ∈ ℕ0)
3029nn0zd 8600 . . . . . . . . 9 (((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) → 𝑦 ∈ ℤ)
314ad4antr 478 . . . . . . . . 9 (((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) → 𝑊 ∈ ℕ)
3230, 31zmodcld 9479 . . . . . . . . 9 (((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) → (𝑦 mod 𝑊) ∈ ℕ0)
33 zq 8844 . . . . . . . . . . 11 (𝑦 ∈ ℤ → 𝑦 ∈ ℚ)
3430, 33syl 14 . . . . . . . . . 10 (((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) → 𝑦 ∈ ℚ)
3531nnzd 8601 . . . . . . . . . . 11 (((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) → 𝑊 ∈ ℤ)
36 zq 8844 . . . . . . . . . . 11 (𝑊 ∈ ℤ → 𝑊 ∈ ℚ)
3735, 36syl 14 . . . . . . . . . 10 (((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) → 𝑊 ∈ ℚ)
3831nngt0d 8201 . . . . . . . . . 10 (((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) → 0 < 𝑊)
39 modqlt 9467 . . . . . . . . . 10 ((𝑦 ∈ ℚ ∧ 𝑊 ∈ ℚ ∧ 0 < 𝑊) → (𝑦 mod 𝑊) < 𝑊)
4034, 37, 38, 39syl3anc 1170 . . . . . . . . 9 (((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) → (𝑦 mod 𝑊) < 𝑊)
41 eqid 2083 . . . . . . . . . 10 (𝑦 mod 𝑊) = (𝑦 mod 𝑊)
42 modremain 10536 . . . . . . . . . 10 ((𝑦 ∈ ℤ ∧ 𝑊 ∈ ℕ ∧ ((𝑦 mod 𝑊) ∈ ℕ0 ∧ (𝑦 mod 𝑊) < 𝑊)) → ((𝑦 mod 𝑊) = (𝑦 mod 𝑊) ↔ ∃𝑞 ∈ ℤ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦))
4341, 42mpbii 146 . . . . . . . . 9 ((𝑦 ∈ ℤ ∧ 𝑊 ∈ ℕ ∧ ((𝑦 mod 𝑊) ∈ ℕ0 ∧ (𝑦 mod 𝑊) < 𝑊)) → ∃𝑞 ∈ ℤ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)
4430, 31, 32, 40, 43syl112anc 1174 . . . . . . . 8 (((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) → ∃𝑞 ∈ ℤ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)
45 simprl 498 . . . . . . . . . . . . . 14 ((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) → 𝑢 ∈ ℤ)
4645ad2antrr 472 . . . . . . . . . . . . 13 ((((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → 𝑢 ∈ ℤ)
47 simprl 498 . . . . . . . . . . . . . 14 ((((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → 𝑞 ∈ ℤ)
48 simplrl 502 . . . . . . . . . . . . . . 15 (((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) → 𝑠 ∈ ℤ)
4948ad3antrrr 476 . . . . . . . . . . . . . 14 ((((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → 𝑠 ∈ ℤ)
5047, 49zmulcld 8608 . . . . . . . . . . . . 13 ((((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → (𝑞 · 𝑠) ∈ ℤ)
5146, 50zsubcld 8607 . . . . . . . . . . . 12 ((((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → (𝑢 − (𝑞 · 𝑠)) ∈ ℤ)
52 simprr 499 . . . . . . . . . . . . . . 15 ((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) → 𝑣 ∈ ℤ)
5352ad2antrr 472 . . . . . . . . . . . . . 14 ((((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → 𝑣 ∈ ℤ)
54 simplrr 503 . . . . . . . . . . . . . . . 16 (((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) → 𝑡 ∈ ℤ)
5554ad3antrrr 476 . . . . . . . . . . . . . . 15 ((((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → 𝑡 ∈ ℤ)
5647, 55zmulcld 8608 . . . . . . . . . . . . . 14 ((((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → (𝑞 · 𝑡) ∈ ℤ)
5753, 56zsubcld 8607 . . . . . . . . . . . . 13 ((((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → (𝑣 − (𝑞 · 𝑡)) ∈ ℤ)
58 simplr 497 . . . . . . . . . . . . . . . 16 ((((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣)))
59 simpr 108 . . . . . . . . . . . . . . . . . . 19 (((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) → 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)))
6059ad3antrrr 476 . . . . . . . . . . . . . . . . . 18 ((((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)))
6160oveq2d 5579 . . . . . . . . . . . . . . . . 17 ((((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → (𝑞 · 𝑊) = (𝑞 · ((𝐴 · 𝑠) + (𝐵 · 𝑡))))
6247zcnd 8603 . . . . . . . . . . . . . . . . . 18 ((((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → 𝑞 ∈ ℂ)
63 bezoutlemstep.a . . . . . . . . . . . . . . . . . . . . 21 (𝜃𝐴 ∈ ℕ0)
6463ad5antr 480 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → 𝐴 ∈ ℕ0)
6564nn0cnd 8462 . . . . . . . . . . . . . . . . . . 19 ((((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → 𝐴 ∈ ℂ)
6649zcnd 8603 . . . . . . . . . . . . . . . . . . 19 ((((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → 𝑠 ∈ ℂ)
6765, 66mulcld 7253 . . . . . . . . . . . . . . . . . 18 ((((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → (𝐴 · 𝑠) ∈ ℂ)
68 bezoutlemstep.b . . . . . . . . . . . . . . . . . . . . 21 (𝜃𝐵 ∈ ℕ0)
6968ad5antr 480 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → 𝐵 ∈ ℕ0)
7069nn0cnd 8462 . . . . . . . . . . . . . . . . . . 19 ((((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → 𝐵 ∈ ℂ)
7155zcnd 8603 . . . . . . . . . . . . . . . . . . 19 ((((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → 𝑡 ∈ ℂ)
7270, 71mulcld 7253 . . . . . . . . . . . . . . . . . 18 ((((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → (𝐵 · 𝑡) ∈ ℂ)
7362, 67, 72adddid 7257 . . . . . . . . . . . . . . . . 17 ((((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → (𝑞 · ((𝐴 · 𝑠) + (𝐵 · 𝑡))) = ((𝑞 · (𝐴 · 𝑠)) + (𝑞 · (𝐵 · 𝑡))))
7462, 65, 66mul12d 7379 . . . . . . . . . . . . . . . . . 18 ((((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → (𝑞 · (𝐴 · 𝑠)) = (𝐴 · (𝑞 · 𝑠)))
7562, 70, 71mul12d 7379 . . . . . . . . . . . . . . . . . 18 ((((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → (𝑞 · (𝐵 · 𝑡)) = (𝐵 · (𝑞 · 𝑡)))
7674, 75oveq12d 5581 . . . . . . . . . . . . . . . . 17 ((((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → ((𝑞 · (𝐴 · 𝑠)) + (𝑞 · (𝐵 · 𝑡))) = ((𝐴 · (𝑞 · 𝑠)) + (𝐵 · (𝑞 · 𝑡))))
7761, 73, 763eqtrd 2119 . . . . . . . . . . . . . . . 16 ((((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → (𝑞 · 𝑊) = ((𝐴 · (𝑞 · 𝑠)) + (𝐵 · (𝑞 · 𝑡))))
7858, 77oveq12d 5581 . . . . . . . . . . . . . . 15 ((((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → (𝑦 − (𝑞 · 𝑊)) = (((𝐴 · 𝑢) + (𝐵 · 𝑣)) − ((𝐴 · (𝑞 · 𝑠)) + (𝐵 · (𝑞 · 𝑡)))))
79 simprr 499 . . . . . . . . . . . . . . . 16 ((((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)
8028ad5antr 480 . . . . . . . . . . . . . . . . . 18 ((((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → 𝑦 ∈ ℕ0)
8180nn0cnd 8462 . . . . . . . . . . . . . . . . 17 ((((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → 𝑦 ∈ ℂ)
8231adantr 270 . . . . . . . . . . . . . . . . . . 19 ((((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → 𝑊 ∈ ℕ)
8382nncnd 8172 . . . . . . . . . . . . . . . . . 18 ((((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → 𝑊 ∈ ℂ)
8462, 83mulcld 7253 . . . . . . . . . . . . . . . . 17 ((((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → (𝑞 · 𝑊) ∈ ℂ)
8534adantr 270 . . . . . . . . . . . . . . . . . . 19 ((((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → 𝑦 ∈ ℚ)
8637adantr 270 . . . . . . . . . . . . . . . . . . 19 ((((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → 𝑊 ∈ ℚ)
8738adantr 270 . . . . . . . . . . . . . . . . . . 19 ((((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → 0 < 𝑊)
8885, 86, 87modqcld 9462 . . . . . . . . . . . . . . . . . 18 ((((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → (𝑦 mod 𝑊) ∈ ℚ)
89 qcn 8852 . . . . . . . . . . . . . . . . . 18 ((𝑦 mod 𝑊) ∈ ℚ → (𝑦 mod 𝑊) ∈ ℂ)
9088, 89syl 14 . . . . . . . . . . . . . . . . 17 ((((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → (𝑦 mod 𝑊) ∈ ℂ)
9181, 84, 90subaddd 7556 . . . . . . . . . . . . . . . 16 ((((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → ((𝑦 − (𝑞 · 𝑊)) = (𝑦 mod 𝑊) ↔ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦))
9279, 91mpbird 165 . . . . . . . . . . . . . . 15 ((((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → (𝑦 − (𝑞 · 𝑊)) = (𝑦 mod 𝑊))
9346zcnd 8603 . . . . . . . . . . . . . . . . 17 ((((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → 𝑢 ∈ ℂ)
9465, 93mulcld 7253 . . . . . . . . . . . . . . . 16 ((((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → (𝐴 · 𝑢) ∈ ℂ)
9553zcnd 8603 . . . . . . . . . . . . . . . . 17 ((((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → 𝑣 ∈ ℂ)
9670, 95mulcld 7253 . . . . . . . . . . . . . . . 16 ((((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → (𝐵 · 𝑣) ∈ ℂ)
9762, 66mulcld 7253 . . . . . . . . . . . . . . . . 17 ((((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → (𝑞 · 𝑠) ∈ ℂ)
9865, 97mulcld 7253 . . . . . . . . . . . . . . . 16 ((((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → (𝐴 · (𝑞 · 𝑠)) ∈ ℂ)
9962, 71mulcld 7253 . . . . . . . . . . . . . . . . 17 ((((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → (𝑞 · 𝑡) ∈ ℂ)
10070, 99mulcld 7253 . . . . . . . . . . . . . . . 16 ((((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → (𝐵 · (𝑞 · 𝑡)) ∈ ℂ)
10194, 96, 98, 100addsub4d 7585 . . . . . . . . . . . . . . 15 ((((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → (((𝐴 · 𝑢) + (𝐵 · 𝑣)) − ((𝐴 · (𝑞 · 𝑠)) + (𝐵 · (𝑞 · 𝑡)))) = (((𝐴 · 𝑢) − (𝐴 · (𝑞 · 𝑠))) + ((𝐵 · 𝑣) − (𝐵 · (𝑞 · 𝑡)))))
10278, 92, 1013eqtr3d 2123 . . . . . . . . . . . . . 14 ((((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → (𝑦 mod 𝑊) = (((𝐴 · 𝑢) − (𝐴 · (𝑞 · 𝑠))) + ((𝐵 · 𝑣) − (𝐵 · (𝑞 · 𝑡)))))
10365, 93, 97subdid 7637 . . . . . . . . . . . . . . 15 ((((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → (𝐴 · (𝑢 − (𝑞 · 𝑠))) = ((𝐴 · 𝑢) − (𝐴 · (𝑞 · 𝑠))))
10470, 95, 99subdid 7637 . . . . . . . . . . . . . . 15 ((((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → (𝐵 · (𝑣 − (𝑞 · 𝑡))) = ((𝐵 · 𝑣) − (𝐵 · (𝑞 · 𝑡))))
105103, 104oveq12d 5581 . . . . . . . . . . . . . 14 ((((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → ((𝐴 · (𝑢 − (𝑞 · 𝑠))) + (𝐵 · (𝑣 − (𝑞 · 𝑡)))) = (((𝐴 · 𝑢) − (𝐴 · (𝑞 · 𝑠))) + ((𝐵 · 𝑣) − (𝐵 · (𝑞 · 𝑡)))))
106102, 105eqtr4d 2118 . . . . . . . . . . . . 13 ((((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → (𝑦 mod 𝑊) = ((𝐴 · (𝑢 − (𝑞 · 𝑠))) + (𝐵 · (𝑣 − (𝑞 · 𝑡)))))
107 oveq2 5571 . . . . . . . . . . . . . . . 16 (𝑘 = (𝑣 − (𝑞 · 𝑡)) → (𝐵 · 𝑘) = (𝐵 · (𝑣 − (𝑞 · 𝑡))))
108107oveq2d 5579 . . . . . . . . . . . . . . 15 (𝑘 = (𝑣 − (𝑞 · 𝑡)) → ((𝐴 · (𝑢 − (𝑞 · 𝑠))) + (𝐵 · 𝑘)) = ((𝐴 · (𝑢 − (𝑞 · 𝑠))) + (𝐵 · (𝑣 − (𝑞 · 𝑡)))))
109108eqeq2d 2094 . . . . . . . . . . . . . 14 (𝑘 = (𝑣 − (𝑞 · 𝑡)) → ((𝑦 mod 𝑊) = ((𝐴 · (𝑢 − (𝑞 · 𝑠))) + (𝐵 · 𝑘)) ↔ (𝑦 mod 𝑊) = ((𝐴 · (𝑢 − (𝑞 · 𝑠))) + (𝐵 · (𝑣 − (𝑞 · 𝑡))))))
110109rspcev 2710 . . . . . . . . . . . . 13 (((𝑣 − (𝑞 · 𝑡)) ∈ ℤ ∧ (𝑦 mod 𝑊) = ((𝐴 · (𝑢 − (𝑞 · 𝑠))) + (𝐵 · (𝑣 − (𝑞 · 𝑡))))) → ∃𝑘 ∈ ℤ (𝑦 mod 𝑊) = ((𝐴 · (𝑢 − (𝑞 · 𝑠))) + (𝐵 · 𝑘)))
11157, 106, 110syl2anc 403 . . . . . . . . . . . 12 ((((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → ∃𝑘 ∈ ℤ (𝑦 mod 𝑊) = ((𝐴 · (𝑢 − (𝑞 · 𝑠))) + (𝐵 · 𝑘)))
112 oveq2 5571 . . . . . . . . . . . . . . . 16 (𝑗 = (𝑢 − (𝑞 · 𝑠)) → (𝐴 · 𝑗) = (𝐴 · (𝑢 − (𝑞 · 𝑠))))
113112oveq1d 5578 . . . . . . . . . . . . . . 15 (𝑗 = (𝑢 − (𝑞 · 𝑠)) → ((𝐴 · 𝑗) + (𝐵 · 𝑘)) = ((𝐴 · (𝑢 − (𝑞 · 𝑠))) + (𝐵 · 𝑘)))
114113eqeq2d 2094 . . . . . . . . . . . . . 14 (𝑗 = (𝑢 − (𝑞 · 𝑠)) → ((𝑦 mod 𝑊) = ((𝐴 · 𝑗) + (𝐵 · 𝑘)) ↔ (𝑦 mod 𝑊) = ((𝐴 · (𝑢 − (𝑞 · 𝑠))) + (𝐵 · 𝑘))))
115114rexbidv 2374 . . . . . . . . . . . . 13 (𝑗 = (𝑢 − (𝑞 · 𝑠)) → (∃𝑘 ∈ ℤ (𝑦 mod 𝑊) = ((𝐴 · 𝑗) + (𝐵 · 𝑘)) ↔ ∃𝑘 ∈ ℤ (𝑦 mod 𝑊) = ((𝐴 · (𝑢 − (𝑞 · 𝑠))) + (𝐵 · 𝑘))))
116115rspcev 2710 . . . . . . . . . . . 12 (((𝑢 − (𝑞 · 𝑠)) ∈ ℤ ∧ ∃𝑘 ∈ ℤ (𝑦 mod 𝑊) = ((𝐴 · (𝑢 − (𝑞 · 𝑠))) + (𝐵 · 𝑘))) → ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ (𝑦 mod 𝑊) = ((𝐴 · 𝑗) + (𝐵 · 𝑘)))
11751, 111, 116syl2anc 403 . . . . . . . . . . 11 ((((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ (𝑦 mod 𝑊) = ((𝐴 · 𝑗) + (𝐵 · 𝑘)))
118 oveq2 5571 . . . . . . . . . . . . . 14 (𝑗 = 𝑠 → (𝐴 · 𝑗) = (𝐴 · 𝑠))
119118oveq1d 5578 . . . . . . . . . . . . 13 (𝑗 = 𝑠 → ((𝐴 · 𝑗) + (𝐵 · 𝑘)) = ((𝐴 · 𝑠) + (𝐵 · 𝑘)))
120119eqeq2d 2094 . . . . . . . . . . . 12 (𝑗 = 𝑠 → ((𝑦 mod 𝑊) = ((𝐴 · 𝑗) + (𝐵 · 𝑘)) ↔ (𝑦 mod 𝑊) = ((𝐴 · 𝑠) + (𝐵 · 𝑘))))
121 oveq2 5571 . . . . . . . . . . . . . 14 (𝑘 = 𝑡 → (𝐵 · 𝑘) = (𝐵 · 𝑡))
122121oveq2d 5579 . . . . . . . . . . . . 13 (𝑘 = 𝑡 → ((𝐴 · 𝑠) + (𝐵 · 𝑘)) = ((𝐴 · 𝑠) + (𝐵 · 𝑡)))
123122eqeq2d 2094 . . . . . . . . . . . 12 (𝑘 = 𝑡 → ((𝑦 mod 𝑊) = ((𝐴 · 𝑠) + (𝐵 · 𝑘)) ↔ (𝑦 mod 𝑊) = ((𝐴 · 𝑠) + (𝐵 · 𝑡))))
124120, 123cbvrex2v 2591 . . . . . . . . . . 11 (∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ (𝑦 mod 𝑊) = ((𝐴 · 𝑗) + (𝐵 · 𝑘)) ↔ ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ (𝑦 mod 𝑊) = ((𝐴 · 𝑠) + (𝐵 · 𝑡)))
125117, 124sylib 120 . . . . . . . . . 10 ((((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ (𝑦 mod 𝑊) = ((𝐴 · 𝑠) + (𝐵 · 𝑡)))
12632adantr 270 . . . . . . . . . . 11 ((((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → (𝑦 mod 𝑊) ∈ ℕ0)
127 eqeq1 2089 . . . . . . . . . . . . 13 (𝑟 = (𝑦 mod 𝑊) → (𝑟 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)) ↔ (𝑦 mod 𝑊) = ((𝐴 · 𝑠) + (𝐵 · 𝑡))))
1281272rexbidv 2396 . . . . . . . . . . . 12 (𝑟 = (𝑦 mod 𝑊) → (∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝑟 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)) ↔ ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ (𝑦 mod 𝑊) = ((𝐴 · 𝑠) + (𝐵 · 𝑡))))
129128sbcieg 2855 . . . . . . . . . . 11 ((𝑦 mod 𝑊) ∈ ℕ0 → ([(𝑦 mod 𝑊) / 𝑟]𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝑟 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)) ↔ ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ (𝑦 mod 𝑊) = ((𝐴 · 𝑠) + (𝐵 · 𝑡))))
130126, 129syl 14 . . . . . . . . . 10 ((((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → ([(𝑦 mod 𝑊) / 𝑟]𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝑟 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)) ↔ ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ (𝑦 mod 𝑊) = ((𝐴 · 𝑠) + (𝐵 · 𝑡))))
131125, 130mpbird 165 . . . . . . . . 9 ((((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → [(𝑦 mod 𝑊) / 𝑟]𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝑟 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)))
1322sbcbii 2882 . . . . . . . . 9 ([(𝑦 mod 𝑊) / 𝑟]𝜑[(𝑦 mod 𝑊) / 𝑟]𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝑟 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)))
133131, 132sylibr 132 . . . . . . . 8 ((((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → [(𝑦 mod 𝑊) / 𝑟]𝜑)
13444, 133rexlimddv 2486 . . . . . . 7 (((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) → [(𝑦 mod 𝑊) / 𝑟]𝜑)
135134ex 113 . . . . . 6 ((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) → (𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣)) → [(𝑦 mod 𝑊) / 𝑟]𝜑))
136135rexlimdvva 2489 . . . . 5 (((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) → (∃𝑢 ∈ ℤ ∃𝑣 ∈ ℤ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣)) → [(𝑦 mod 𝑊) / 𝑟]𝜑))
13727, 136mpd 13 . . . 4 (((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) → [(𝑦 mod 𝑊) / 𝑟]𝜑)
138137ex 113 . . 3 ((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) → (𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)) → [(𝑦 mod 𝑊) / 𝑟]𝜑))
139138rexlimdvva 2489 . 2 (𝜃 → (∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)) → [(𝑦 mod 𝑊) / 𝑟]𝜑))
14010, 139mpd 13 1 (𝜃[(𝑦 mod 𝑊) / 𝑟]𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103  w3a 920   = wceq 1285  wcel 1434  [wsb 1687  wrex 2354  [wsbc 2824   class class class wbr 3805  (class class class)co 5563  cc 7093  0cc0 7095   + caddc 7098   · cmul 7100   < clt 7267  cmin 7398  cn 8158  0cn0 8407  cz 8484  cq 8837   mod cmo 9456
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-coll 3913  ax-sep 3916  ax-nul 3924  ax-pow 3968  ax-pr 3992  ax-un 4216  ax-setind 4308  ax-iinf 4357  ax-cnex 7181  ax-resscn 7182  ax-1cn 7183  ax-1re 7184  ax-icn 7185  ax-addcl 7186  ax-addrcl 7187  ax-mulcl 7188  ax-mulrcl 7189  ax-addcom 7190  ax-mulcom 7191  ax-addass 7192  ax-mulass 7193  ax-distr 7194  ax-i2m1 7195  ax-0lt1 7196  ax-1rid 7197  ax-0id 7198  ax-rnegex 7199  ax-precex 7200  ax-cnre 7201  ax-pre-ltirr 7202  ax-pre-ltwlin 7203  ax-pre-lttrn 7204  ax-pre-apti 7205  ax-pre-ltadd 7206  ax-pre-mulgt0 7207  ax-pre-mulext 7208  ax-arch 7209
This theorem depends on definitions:  df-bi 115  df-dc 777  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-nel 2345  df-ral 2358  df-rex 2359  df-reu 2360  df-rmo 2361  df-rab 2362  df-v 2612  df-sbc 2825  df-csb 2918  df-dif 2984  df-un 2986  df-in 2988  df-ss 2995  df-nul 3268  df-if 3369  df-pw 3402  df-sn 3422  df-pr 3423  df-op 3425  df-uni 3622  df-int 3657  df-iun 3700  df-br 3806  df-opab 3860  df-mpt 3861  df-tr 3896  df-id 4076  df-po 4079  df-iso 4080  df-iord 4149  df-on 4151  df-ilim 4152  df-suc 4154  df-iom 4360  df-xp 4397  df-rel 4398  df-cnv 4399  df-co 4400  df-dm 4401  df-rn 4402  df-res 4403  df-ima 4404  df-iota 4917  df-fun 4954  df-fn 4955  df-f 4956  df-f1 4957  df-fo 4958  df-f1o 4959  df-fv 4960  df-riota 5519  df-ov 5566  df-oprab 5567  df-mpt2 5568  df-1st 5818  df-2nd 5819  df-recs 5974  df-frec 6060  df-pnf 7269  df-mnf 7270  df-xr 7271  df-ltxr 7272  df-le 7273  df-sub 7400  df-neg 7401  df-reap 7794  df-ap 7801  df-div 7880  df-inn 8159  df-2 8217  df-n0 8408  df-z 8485  df-uz 8753  df-q 8838  df-rp 8868  df-fl 9404  df-mod 9457  df-iseq 9574  df-iexp 9625  df-cj 9930  df-re 9931  df-im 9932  df-rsqrt 10085  df-abs 10086  df-dvds 10404
This theorem is referenced by:  bezoutlemstep  10593
  Copyright terms: Public domain W3C validator