Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  bezoutlemzz GIF version

Theorem bezoutlemzz 10616
 Description: Lemma for Bézout's identity. Like bezoutlemex 10615 but where ' z ' is any integer, not just a nonnegative one. (Contributed by Mario Carneiro and Jim Kingdon, 8-Jan-2022.)
Assertion
Ref Expression
bezoutlemzz ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℤ (𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
Distinct variable groups:   𝐴,𝑑,𝑥,𝑦   𝐵,𝑑,𝑥,𝑦   𝑧,𝐴,𝑑   𝑧,𝐵

Proof of Theorem bezoutlemzz
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 bezoutlemex 10615 . 2 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
2 nfv 1462 . . . . . . 7 𝑧((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0)
3 nfra1 2402 . . . . . . 7 𝑧𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝐵))
42, 3nfan 1498 . . . . . 6 𝑧(((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ ∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝐵)))
5 simpr 108 . . . . . . . . . 10 (((∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ∧ 𝑧 ∈ ℤ) ∧ 𝑧 ∈ ℕ0) → 𝑧 ∈ ℕ0)
6 rsp 2416 . . . . . . . . . . 11 (∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝐵)) → (𝑧 ∈ ℕ0 → (𝑧𝑑 → (𝑧𝐴𝑧𝐵))))
76ad2antrr 472 . . . . . . . . . 10 (((∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ∧ 𝑧 ∈ ℤ) ∧ 𝑧 ∈ ℕ0) → (𝑧 ∈ ℕ0 → (𝑧𝑑 → (𝑧𝐴𝑧𝐵))))
85, 7mpd 13 . . . . . . . . 9 (((∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ∧ 𝑧 ∈ ℤ) ∧ 𝑧 ∈ ℕ0) → (𝑧𝑑 → (𝑧𝐴𝑧𝐵)))
98adantlll 464 . . . . . . . 8 ((((((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ ∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝐵))) ∧ 𝑧 ∈ ℤ) ∧ 𝑧 ∈ ℕ0) → (𝑧𝑑 → (𝑧𝐴𝑧𝐵)))
10 breq1 3808 . . . . . . . . . . . 12 (𝑤 = -𝑧 → (𝑤𝑑 ↔ -𝑧𝑑))
11 breq1 3808 . . . . . . . . . . . . 13 (𝑤 = -𝑧 → (𝑤𝐴 ↔ -𝑧𝐴))
12 breq1 3808 . . . . . . . . . . . . 13 (𝑤 = -𝑧 → (𝑤𝐵 ↔ -𝑧𝐵))
1311, 12anbi12d 457 . . . . . . . . . . . 12 (𝑤 = -𝑧 → ((𝑤𝐴𝑤𝐵) ↔ (-𝑧𝐴 ∧ -𝑧𝐵)))
1410, 13imbi12d 232 . . . . . . . . . . 11 (𝑤 = -𝑧 → ((𝑤𝑑 → (𝑤𝐴𝑤𝐵)) ↔ (-𝑧𝑑 → (-𝑧𝐴 ∧ -𝑧𝐵))))
15 breq1 3808 . . . . . . . . . . . . . . 15 (𝑧 = 𝑤 → (𝑧𝑑𝑤𝑑))
16 breq1 3808 . . . . . . . . . . . . . . . 16 (𝑧 = 𝑤 → (𝑧𝐴𝑤𝐴))
17 breq1 3808 . . . . . . . . . . . . . . . 16 (𝑧 = 𝑤 → (𝑧𝐵𝑤𝐵))
1816, 17anbi12d 457 . . . . . . . . . . . . . . 15 (𝑧 = 𝑤 → ((𝑧𝐴𝑧𝐵) ↔ (𝑤𝐴𝑤𝐵)))
1915, 18imbi12d 232 . . . . . . . . . . . . . 14 (𝑧 = 𝑤 → ((𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ↔ (𝑤𝑑 → (𝑤𝐴𝑤𝐵))))
2019cbvralv 2582 . . . . . . . . . . . . 13 (∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ↔ ∀𝑤 ∈ ℕ0 (𝑤𝑑 → (𝑤𝐴𝑤𝐵)))
2120biimpi 118 . . . . . . . . . . . 12 (∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝐵)) → ∀𝑤 ∈ ℕ0 (𝑤𝑑 → (𝑤𝐴𝑤𝐵)))
2221ad2antrr 472 . . . . . . . . . . 11 (((∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ∧ 𝑧 ∈ ℤ) ∧ -𝑧 ∈ ℕ0) → ∀𝑤 ∈ ℕ0 (𝑤𝑑 → (𝑤𝐴𝑤𝐵)))
23 simpr 108 . . . . . . . . . . 11 (((∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ∧ 𝑧 ∈ ℤ) ∧ -𝑧 ∈ ℕ0) → -𝑧 ∈ ℕ0)
2414, 22, 23rspcdva 2715 . . . . . . . . . 10 (((∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ∧ 𝑧 ∈ ℤ) ∧ -𝑧 ∈ ℕ0) → (-𝑧𝑑 → (-𝑧𝐴 ∧ -𝑧𝐵)))
2524adantlll 464 . . . . . . . . 9 ((((((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ ∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝐵))) ∧ 𝑧 ∈ ℤ) ∧ -𝑧 ∈ ℕ0) → (-𝑧𝑑 → (-𝑧𝐴 ∧ -𝑧𝐵)))
26 simplr 497 . . . . . . . . . 10 ((((((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ ∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝐵))) ∧ 𝑧 ∈ ℤ) ∧ -𝑧 ∈ ℕ0) → 𝑧 ∈ ℤ)
27 simpllr 501 . . . . . . . . . . . 12 (((((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ ∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝐵))) ∧ 𝑧 ∈ ℤ) → 𝑑 ∈ ℕ0)
2827adantr 270 . . . . . . . . . . 11 ((((((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ ∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝐵))) ∧ 𝑧 ∈ ℤ) ∧ -𝑧 ∈ ℕ0) → 𝑑 ∈ ℕ0)
2928nn0zd 8618 . . . . . . . . . 10 ((((((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ ∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝐵))) ∧ 𝑧 ∈ ℤ) ∧ -𝑧 ∈ ℕ0) → 𝑑 ∈ ℤ)
30 negdvdsb 10437 . . . . . . . . . 10 ((𝑧 ∈ ℤ ∧ 𝑑 ∈ ℤ) → (𝑧𝑑 ↔ -𝑧𝑑))
3126, 29, 30syl2anc 403 . . . . . . . . 9 ((((((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ ∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝐵))) ∧ 𝑧 ∈ ℤ) ∧ -𝑧 ∈ ℕ0) → (𝑧𝑑 ↔ -𝑧𝑑))
32 simplll 500 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ ∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝐵))) → 𝐴 ∈ ℕ0)
3332ad2antrr 472 . . . . . . . . . . . 12 ((((((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ ∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝐵))) ∧ 𝑧 ∈ ℤ) ∧ -𝑧 ∈ ℕ0) → 𝐴 ∈ ℕ0)
3433nn0zd 8618 . . . . . . . . . . 11 ((((((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ ∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝐵))) ∧ 𝑧 ∈ ℤ) ∧ -𝑧 ∈ ℕ0) → 𝐴 ∈ ℤ)
35 negdvdsb 10437 . . . . . . . . . . 11 ((𝑧 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝑧𝐴 ↔ -𝑧𝐴))
3626, 34, 35syl2anc 403 . . . . . . . . . 10 ((((((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ ∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝐵))) ∧ 𝑧 ∈ ℤ) ∧ -𝑧 ∈ ℕ0) → (𝑧𝐴 ↔ -𝑧𝐴))
37 simpllr 501 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ ∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝐵))) → 𝐵 ∈ ℕ0)
3837ad2antrr 472 . . . . . . . . . . . 12 ((((((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ ∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝐵))) ∧ 𝑧 ∈ ℤ) ∧ -𝑧 ∈ ℕ0) → 𝐵 ∈ ℕ0)
3938nn0zd 8618 . . . . . . . . . . 11 ((((((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ ∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝐵))) ∧ 𝑧 ∈ ℤ) ∧ -𝑧 ∈ ℕ0) → 𝐵 ∈ ℤ)
40 negdvdsb 10437 . . . . . . . . . . 11 ((𝑧 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝑧𝐵 ↔ -𝑧𝐵))
4126, 39, 40syl2anc 403 . . . . . . . . . 10 ((((((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ ∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝐵))) ∧ 𝑧 ∈ ℤ) ∧ -𝑧 ∈ ℕ0) → (𝑧𝐵 ↔ -𝑧𝐵))
4236, 41anbi12d 457 . . . . . . . . 9 ((((((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ ∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝐵))) ∧ 𝑧 ∈ ℤ) ∧ -𝑧 ∈ ℕ0) → ((𝑧𝐴𝑧𝐵) ↔ (-𝑧𝐴 ∧ -𝑧𝐵)))
4325, 31, 423imtr4d 201 . . . . . . . 8 ((((((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ ∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝐵))) ∧ 𝑧 ∈ ℤ) ∧ -𝑧 ∈ ℕ0) → (𝑧𝑑 → (𝑧𝐴𝑧𝐵)))
44 elznn0 8517 . . . . . . . . . 10 (𝑧 ∈ ℤ ↔ (𝑧 ∈ ℝ ∧ (𝑧 ∈ ℕ0 ∨ -𝑧 ∈ ℕ0)))
4544simprbi 269 . . . . . . . . 9 (𝑧 ∈ ℤ → (𝑧 ∈ ℕ0 ∨ -𝑧 ∈ ℕ0))
4645adantl 271 . . . . . . . 8 (((((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ ∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝐵))) ∧ 𝑧 ∈ ℤ) → (𝑧 ∈ ℕ0 ∨ -𝑧 ∈ ℕ0))
479, 43, 46mpjaodan 745 . . . . . . 7 (((((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ ∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝐵))) ∧ 𝑧 ∈ ℤ) → (𝑧𝑑 → (𝑧𝐴𝑧𝐵)))
4847ex 113 . . . . . 6 ((((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ ∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝐵))) → (𝑧 ∈ ℤ → (𝑧𝑑 → (𝑧𝐴𝑧𝐵))))
494, 48ralrimi 2437 . . . . 5 ((((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ ∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝐵))) → ∀𝑧 ∈ ℤ (𝑧𝑑 → (𝑧𝐴𝑧𝐵)))
5049ex 113 . . . 4 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) → (∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝐵)) → ∀𝑧 ∈ ℤ (𝑧𝑑 → (𝑧𝐴𝑧𝐵))))
5150anim1d 329 . . 3 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) → ((∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))) → (∀𝑧 ∈ ℤ (𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))))
5251reximdva 2468 . 2 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℤ (𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))))
531, 52mpd 13 1 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℤ (𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 102   ↔ wb 103   ∨ wo 662   = wceq 1285   ∈ wcel 1434  ∀wral 2353  ∃wrex 2354   class class class wbr 3805  (class class class)co 5564  ℝcr 7112   + caddc 7116   · cmul 7118  -cneg 7417  ℕ0cn0 8425  ℤcz 8502   ∥ cdvds 10421 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-coll 3913  ax-sep 3916  ax-nul 3924  ax-pow 3968  ax-pr 3992  ax-un 4216  ax-setind 4308  ax-iinf 4357  ax-cnex 7199  ax-resscn 7200  ax-1cn 7201  ax-1re 7202  ax-icn 7203  ax-addcl 7204  ax-addrcl 7205  ax-mulcl 7206  ax-mulrcl 7207  ax-addcom 7208  ax-mulcom 7209  ax-addass 7210  ax-mulass 7211  ax-distr 7212  ax-i2m1 7213  ax-0lt1 7214  ax-1rid 7215  ax-0id 7216  ax-rnegex 7217  ax-precex 7218  ax-cnre 7219  ax-pre-ltirr 7220  ax-pre-ltwlin 7221  ax-pre-lttrn 7222  ax-pre-apti 7223  ax-pre-ltadd 7224  ax-pre-mulgt0 7225  ax-pre-mulext 7226  ax-arch 7227 This theorem depends on definitions:  df-bi 115  df-dc 777  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-nel 2345  df-ral 2358  df-rex 2359  df-reu 2360  df-rmo 2361  df-rab 2362  df-v 2612  df-sbc 2825  df-csb 2918  df-dif 2984  df-un 2986  df-in 2988  df-ss 2995  df-nul 3268  df-if 3369  df-pw 3402  df-sn 3422  df-pr 3423  df-op 3425  df-uni 3622  df-int 3657  df-iun 3700  df-br 3806  df-opab 3860  df-mpt 3861  df-tr 3896  df-id 4076  df-po 4079  df-iso 4080  df-iord 4149  df-on 4151  df-ilim 4152  df-suc 4154  df-iom 4360  df-xp 4397  df-rel 4398  df-cnv 4399  df-co 4400  df-dm 4401  df-rn 4402  df-res 4403  df-ima 4404  df-iota 4917  df-fun 4954  df-fn 4955  df-f 4956  df-f1 4957  df-fo 4958  df-f1o 4959  df-fv 4960  df-riota 5520  df-ov 5567  df-oprab 5568  df-mpt2 5569  df-1st 5819  df-2nd 5820  df-recs 5975  df-frec 6061  df-pnf 7287  df-mnf 7288  df-xr 7289  df-ltxr 7290  df-le 7291  df-sub 7418  df-neg 7419  df-reap 7812  df-ap 7819  df-div 7898  df-inn 8177  df-2 8235  df-n0 8426  df-z 8503  df-uz 8771  df-q 8856  df-rp 8886  df-fz 9176  df-fl 9422  df-mod 9475  df-iseq 9592  df-iexp 9643  df-cj 9948  df-re 9949  df-im 9950  df-rsqrt 10103  df-abs 10104  df-dvds 10422 This theorem is referenced by:  bezoutlemaz  10617
 Copyright terms: Public domain W3C validator