ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bicom1 GIF version

Theorem bicom1 129
Description: Commutative law for equivalence. (Contributed by Wolf Lammen, 10-Nov-2012.)
Assertion
Ref Expression
bicom1 ((𝜑𝜓) → (𝜓𝜑))

Proof of Theorem bicom1
StepHypRef Expression
1 bi2 128 . 2 ((𝜑𝜓) → (𝜓𝜑))
2 bi1 116 . 2 ((𝜑𝜓) → (𝜑𝜓))
31, 2impbid 127 1 ((𝜑𝜓) → (𝜓𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 103
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106
This theorem depends on definitions:  df-bi 115
This theorem is referenced by:  bicomi  130  bicom  138  pm5.21ndd  654  cbvexdh  1843  elabgf2  10741
  Copyright terms: Public domain W3C validator