Mathbox for BJ < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-axempty2 GIF version

Theorem bj-axempty2 10843
 Description: Axiom of the empty set from bounded separation, alternate version to bj-axempty 10842. (Contributed by BJ, 27-Oct-2020.) (Proof modification is discouraged.) Use ax-nul 3912 instead. (New usage is discouraged.)
Assertion
Ref Expression
bj-axempty2 𝑥𝑦 ¬ 𝑦𝑥
Distinct variable group:   𝑥,𝑦

Proof of Theorem bj-axempty2
StepHypRef Expression
1 bj-axemptylem 10841 . 2 𝑥𝑦(𝑦𝑥 → ⊥)
2 dfnot 1303 . . . 4 𝑦𝑥 ↔ (𝑦𝑥 → ⊥))
32albii 1400 . . 3 (∀𝑦 ¬ 𝑦𝑥 ↔ ∀𝑦(𝑦𝑥 → ⊥))
43exbii 1537 . 2 (∃𝑥𝑦 ¬ 𝑦𝑥 ↔ ∃𝑥𝑦(𝑦𝑥 → ⊥))
51, 4mpbir 144 1 𝑥𝑦 ¬ 𝑦𝑥
 Colors of variables: wff set class Syntax hints:  ¬ wn 3   → wi 4  ∀wal 1283  ⊥wfal 1290  ∃wex 1422 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-5 1377  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-4 1441  ax-ial 1468  ax-bd0 10762  ax-bdim 10763  ax-bdn 10766  ax-bdeq 10769  ax-bdsep 10833 This theorem depends on definitions:  df-bi 115  df-tru 1288  df-fal 1291 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator