![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-bdfindis | GIF version |
Description: Bounded induction (principle of induction for bounded formulas), using implicit substitutions (the biconditional versions of the hypotheses are implicit substitutions, and we have weakened them to implications). Constructive proof (from CZF). See finds 4369 for a proof of full induction in IZF. From this version, it is easy to prove bounded versions of finds 4369, finds2 4370, finds1 4371. (Contributed by BJ, 21-Nov-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-bdfindis.bd | ⊢ BOUNDED 𝜑 |
bj-bdfindis.nf0 | ⊢ Ⅎ𝑥𝜓 |
bj-bdfindis.nf1 | ⊢ Ⅎ𝑥𝜒 |
bj-bdfindis.nfsuc | ⊢ Ⅎ𝑥𝜃 |
bj-bdfindis.0 | ⊢ (𝑥 = ∅ → (𝜓 → 𝜑)) |
bj-bdfindis.1 | ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜒)) |
bj-bdfindis.suc | ⊢ (𝑥 = suc 𝑦 → (𝜃 → 𝜑)) |
Ref | Expression |
---|---|
bj-bdfindis | ⊢ ((𝜓 ∧ ∀𝑦 ∈ ω (𝜒 → 𝜃)) → ∀𝑥 ∈ ω 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-bdfindis.nf0 | . . . 4 ⊢ Ⅎ𝑥𝜓 | |
2 | 0ex 3925 | . . . 4 ⊢ ∅ ∈ V | |
3 | bj-bdfindis.0 | . . . 4 ⊢ (𝑥 = ∅ → (𝜓 → 𝜑)) | |
4 | 1, 2, 3 | elabf2 10852 | . . 3 ⊢ (𝜓 → ∅ ∈ {𝑥 ∣ 𝜑}) |
5 | bj-bdfindis.nf1 | . . . . . 6 ⊢ Ⅎ𝑥𝜒 | |
6 | bj-bdfindis.1 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜒)) | |
7 | 5, 6 | elabf1 10851 | . . . . 5 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜑} → 𝜒) |
8 | bj-bdfindis.nfsuc | . . . . . 6 ⊢ Ⅎ𝑥𝜃 | |
9 | vex 2613 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
10 | 9 | bj-sucex 10981 | . . . . . 6 ⊢ suc 𝑦 ∈ V |
11 | bj-bdfindis.suc | . . . . . 6 ⊢ (𝑥 = suc 𝑦 → (𝜃 → 𝜑)) | |
12 | 8, 10, 11 | elabf2 10852 | . . . . 5 ⊢ (𝜃 → suc 𝑦 ∈ {𝑥 ∣ 𝜑}) |
13 | 7, 12 | imim12i 58 | . . . 4 ⊢ ((𝜒 → 𝜃) → (𝑦 ∈ {𝑥 ∣ 𝜑} → suc 𝑦 ∈ {𝑥 ∣ 𝜑})) |
14 | 13 | ralimi 2431 | . . 3 ⊢ (∀𝑦 ∈ ω (𝜒 → 𝜃) → ∀𝑦 ∈ ω (𝑦 ∈ {𝑥 ∣ 𝜑} → suc 𝑦 ∈ {𝑥 ∣ 𝜑})) |
15 | bj-bdfindis.bd | . . . . 5 ⊢ BOUNDED 𝜑 | |
16 | 15 | bdcab 10907 | . . . 4 ⊢ BOUNDED {𝑥 ∣ 𝜑} |
17 | 16 | bdpeano5 11005 | . . 3 ⊢ ((∅ ∈ {𝑥 ∣ 𝜑} ∧ ∀𝑦 ∈ ω (𝑦 ∈ {𝑥 ∣ 𝜑} → suc 𝑦 ∈ {𝑥 ∣ 𝜑})) → ω ⊆ {𝑥 ∣ 𝜑}) |
18 | 4, 14, 17 | syl2an 283 | . 2 ⊢ ((𝜓 ∧ ∀𝑦 ∈ ω (𝜒 → 𝜃)) → ω ⊆ {𝑥 ∣ 𝜑}) |
19 | ssabral 3074 | . 2 ⊢ (ω ⊆ {𝑥 ∣ 𝜑} ↔ ∀𝑥 ∈ ω 𝜑) | |
20 | 18, 19 | sylib 120 | 1 ⊢ ((𝜓 ∧ ∀𝑦 ∈ ω (𝜒 → 𝜃)) → ∀𝑥 ∈ ω 𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 = wceq 1285 Ⅎwnf 1390 ∈ wcel 1434 {cab 2069 ∀wral 2353 ⊆ wss 2982 ∅c0 3267 suc csuc 4148 ωcom 4359 BOUNDED wbd 10870 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 577 ax-in2 578 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-13 1445 ax-14 1446 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2065 ax-nul 3924 ax-pr 3992 ax-un 4216 ax-bd0 10871 ax-bdor 10874 ax-bdex 10877 ax-bdeq 10878 ax-bdel 10879 ax-bdsb 10880 ax-bdsep 10942 ax-infvn 11003 |
This theorem depends on definitions: df-bi 115 df-tru 1288 df-nf 1391 df-sb 1688 df-clab 2070 df-cleq 2076 df-clel 2079 df-nfc 2212 df-ral 2358 df-rex 2359 df-rab 2362 df-v 2612 df-dif 2984 df-un 2986 df-in 2988 df-ss 2995 df-nul 3268 df-sn 3422 df-pr 3423 df-uni 3622 df-int 3657 df-suc 4154 df-iom 4360 df-bdc 10899 df-bj-ind 10989 |
This theorem is referenced by: bj-bdfindisg 11010 bj-bdfindes 11011 bj-nn0suc0 11012 |
Copyright terms: Public domain | W3C validator |