Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-bdfindis GIF version

Theorem bj-bdfindis 13145
Description: Bounded induction (principle of induction for bounded formulas), using implicit substitutions (the biconditional versions of the hypotheses are implicit substitutions, and we have weakened them to implications). Constructive proof (from CZF). See finds 4514 for a proof of full induction in IZF. From this version, it is easy to prove bounded versions of finds 4514, finds2 4515, finds1 4516. (Contributed by BJ, 21-Nov-2019.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
bj-bdfindis.bd BOUNDED 𝜑
bj-bdfindis.nf0 𝑥𝜓
bj-bdfindis.nf1 𝑥𝜒
bj-bdfindis.nfsuc 𝑥𝜃
bj-bdfindis.0 (𝑥 = ∅ → (𝜓𝜑))
bj-bdfindis.1 (𝑥 = 𝑦 → (𝜑𝜒))
bj-bdfindis.suc (𝑥 = suc 𝑦 → (𝜃𝜑))
Assertion
Ref Expression
bj-bdfindis ((𝜓 ∧ ∀𝑦 ∈ ω (𝜒𝜃)) → ∀𝑥 ∈ ω 𝜑)
Distinct variable groups:   𝑥,𝑦   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥,𝑦)   𝜒(𝑥,𝑦)   𝜃(𝑥,𝑦)

Proof of Theorem bj-bdfindis
StepHypRef Expression
1 bj-bdfindis.nf0 . . . 4 𝑥𝜓
2 0ex 4055 . . . 4 ∅ ∈ V
3 bj-bdfindis.0 . . . 4 (𝑥 = ∅ → (𝜓𝜑))
41, 2, 3elabf2 12989 . . 3 (𝜓 → ∅ ∈ {𝑥𝜑})
5 bj-bdfindis.nf1 . . . . . 6 𝑥𝜒
6 bj-bdfindis.1 . . . . . 6 (𝑥 = 𝑦 → (𝜑𝜒))
75, 6elabf1 12988 . . . . 5 (𝑦 ∈ {𝑥𝜑} → 𝜒)
8 bj-bdfindis.nfsuc . . . . . 6 𝑥𝜃
9 vex 2689 . . . . . . 7 𝑦 ∈ V
109bj-sucex 13121 . . . . . 6 suc 𝑦 ∈ V
11 bj-bdfindis.suc . . . . . 6 (𝑥 = suc 𝑦 → (𝜃𝜑))
128, 10, 11elabf2 12989 . . . . 5 (𝜃 → suc 𝑦 ∈ {𝑥𝜑})
137, 12imim12i 59 . . . 4 ((𝜒𝜃) → (𝑦 ∈ {𝑥𝜑} → suc 𝑦 ∈ {𝑥𝜑}))
1413ralimi 2495 . . 3 (∀𝑦 ∈ ω (𝜒𝜃) → ∀𝑦 ∈ ω (𝑦 ∈ {𝑥𝜑} → suc 𝑦 ∈ {𝑥𝜑}))
15 bj-bdfindis.bd . . . . 5 BOUNDED 𝜑
1615bdcab 13047 . . . 4 BOUNDED {𝑥𝜑}
1716bdpeano5 13141 . . 3 ((∅ ∈ {𝑥𝜑} ∧ ∀𝑦 ∈ ω (𝑦 ∈ {𝑥𝜑} → suc 𝑦 ∈ {𝑥𝜑})) → ω ⊆ {𝑥𝜑})
184, 14, 17syl2an 287 . 2 ((𝜓 ∧ ∀𝑦 ∈ ω (𝜒𝜃)) → ω ⊆ {𝑥𝜑})
19 ssabral 3168 . 2 (ω ⊆ {𝑥𝜑} ↔ ∀𝑥 ∈ ω 𝜑)
2018, 19sylib 121 1 ((𝜓 ∧ ∀𝑦 ∈ ω (𝜒𝜃)) → ∀𝑥 ∈ ω 𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1331  wnf 1436  wcel 1480  {cab 2125  wral 2416  wss 3071  c0 3363  suc csuc 4287  ωcom 4504  BOUNDED wbd 13010
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-nul 4054  ax-pr 4131  ax-un 4355  ax-bd0 13011  ax-bdor 13014  ax-bdex 13017  ax-bdeq 13018  ax-bdel 13019  ax-bdsb 13020  ax-bdsep 13082  ax-infvn 13139
This theorem depends on definitions:  df-bi 116  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-rab 2425  df-v 2688  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-sn 3533  df-pr 3534  df-uni 3737  df-int 3772  df-suc 4293  df-iom 4505  df-bdc 13039  df-bj-ind 13125
This theorem is referenced by:  bj-bdfindisg  13146  bj-bdfindes  13147  bj-nn0suc0  13148
  Copyright terms: Public domain W3C validator