![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-findisg | GIF version |
Description: Version of bj-findis 10917 using a class term in the consequent. Constructive proof (from CZF). See the comment of bj-findis 10917 for explanations. (Contributed by BJ, 21-Nov-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-findis.nf0 | ⊢ Ⅎ𝑥𝜓 |
bj-findis.nf1 | ⊢ Ⅎ𝑥𝜒 |
bj-findis.nfsuc | ⊢ Ⅎ𝑥𝜃 |
bj-findis.0 | ⊢ (𝑥 = ∅ → (𝜓 → 𝜑)) |
bj-findis.1 | ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜒)) |
bj-findis.suc | ⊢ (𝑥 = suc 𝑦 → (𝜃 → 𝜑)) |
bj-findisg.nfa | ⊢ Ⅎ𝑥𝐴 |
bj-findisg.nfterm | ⊢ Ⅎ𝑥𝜏 |
bj-findisg.term | ⊢ (𝑥 = 𝐴 → (𝜑 → 𝜏)) |
Ref | Expression |
---|---|
bj-findisg | ⊢ ((𝜓 ∧ ∀𝑦 ∈ ω (𝜒 → 𝜃)) → (𝐴 ∈ ω → 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-findis.nf0 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
2 | bj-findis.nf1 | . . 3 ⊢ Ⅎ𝑥𝜒 | |
3 | bj-findis.nfsuc | . . 3 ⊢ Ⅎ𝑥𝜃 | |
4 | bj-findis.0 | . . 3 ⊢ (𝑥 = ∅ → (𝜓 → 𝜑)) | |
5 | bj-findis.1 | . . 3 ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜒)) | |
6 | bj-findis.suc | . . 3 ⊢ (𝑥 = suc 𝑦 → (𝜃 → 𝜑)) | |
7 | 1, 2, 3, 4, 5, 6 | bj-findis 10917 | . 2 ⊢ ((𝜓 ∧ ∀𝑦 ∈ ω (𝜒 → 𝜃)) → ∀𝑥 ∈ ω 𝜑) |
8 | bj-findisg.nfa | . . 3 ⊢ Ⅎ𝑥𝐴 | |
9 | nfcv 2220 | . . 3 ⊢ Ⅎ𝑥ω | |
10 | bj-findisg.nfterm | . . 3 ⊢ Ⅎ𝑥𝜏 | |
11 | bj-findisg.term | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 → 𝜏)) | |
12 | 8, 9, 10, 11 | bj-rspg 10733 | . 2 ⊢ (∀𝑥 ∈ ω 𝜑 → (𝐴 ∈ ω → 𝜏)) |
13 | 7, 12 | syl 14 | 1 ⊢ ((𝜓 ∧ ∀𝑦 ∈ ω (𝜒 → 𝜃)) → (𝐴 ∈ ω → 𝜏)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 = wceq 1285 Ⅎwnf 1390 ∈ wcel 1434 Ⅎwnfc 2207 ∀wral 2349 ∅c0 3252 suc csuc 4122 ωcom 4333 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 577 ax-in2 578 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-13 1445 ax-14 1446 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2064 ax-nul 3906 ax-pr 3966 ax-un 4190 ax-setind 4282 ax-bd0 10747 ax-bdim 10748 ax-bdan 10749 ax-bdor 10750 ax-bdn 10751 ax-bdal 10752 ax-bdex 10753 ax-bdeq 10754 ax-bdel 10755 ax-bdsb 10756 ax-bdsep 10818 ax-infvn 10879 |
This theorem depends on definitions: df-bi 115 df-tru 1288 df-fal 1291 df-nf 1391 df-sb 1687 df-clab 2069 df-cleq 2075 df-clel 2078 df-nfc 2209 df-ral 2354 df-rex 2355 df-rab 2358 df-v 2604 df-dif 2976 df-un 2978 df-in 2980 df-ss 2987 df-nul 3253 df-sn 3406 df-pr 3407 df-uni 3604 df-int 3639 df-suc 4128 df-iom 4334 df-bdc 10775 df-bj-ind 10865 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |