Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-indint GIF version

Theorem bj-indint 10884
Description: The property of being an inductive class is closed under intersections. (Contributed by BJ, 30-Nov-2019.)
Assertion
Ref Expression
bj-indint Ind {𝑥𝐴 ∣ Ind 𝑥}
Distinct variable group:   𝑥,𝐴

Proof of Theorem bj-indint
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-bj-ind 10880 . . . . 5 (Ind 𝑥 ↔ (∅ ∈ 𝑥 ∧ ∀𝑦𝑥 suc 𝑦𝑥))
21simplbi 268 . . . 4 (Ind 𝑥 → ∅ ∈ 𝑥)
32rgenw 2419 . . 3 𝑥𝐴 (Ind 𝑥 → ∅ ∈ 𝑥)
4 0ex 3913 . . . 4 ∅ ∈ V
54elintrab 3656 . . 3 (∅ ∈ {𝑥𝐴 ∣ Ind 𝑥} ↔ ∀𝑥𝐴 (Ind 𝑥 → ∅ ∈ 𝑥))
63, 5mpbir 144 . 2 ∅ ∈ {𝑥𝐴 ∣ Ind 𝑥}
7 bj-indsuc 10881 . . . . . 6 (Ind 𝑥 → (𝑦𝑥 → suc 𝑦𝑥))
87a2i 11 . . . . 5 ((Ind 𝑥𝑦𝑥) → (Ind 𝑥 → suc 𝑦𝑥))
98ralimi 2427 . . . 4 (∀𝑥𝐴 (Ind 𝑥𝑦𝑥) → ∀𝑥𝐴 (Ind 𝑥 → suc 𝑦𝑥))
10 vex 2605 . . . . 5 𝑦 ∈ V
1110elintrab 3656 . . . 4 (𝑦 {𝑥𝐴 ∣ Ind 𝑥} ↔ ∀𝑥𝐴 (Ind 𝑥𝑦𝑥))
1210bj-sucex 10872 . . . . 5 suc 𝑦 ∈ V
1312elintrab 3656 . . . 4 (suc 𝑦 {𝑥𝐴 ∣ Ind 𝑥} ↔ ∀𝑥𝐴 (Ind 𝑥 → suc 𝑦𝑥))
149, 11, 133imtr4i 199 . . 3 (𝑦 {𝑥𝐴 ∣ Ind 𝑥} → suc 𝑦 {𝑥𝐴 ∣ Ind 𝑥})
1514rgen 2417 . 2 𝑦 {𝑥𝐴 ∣ Ind 𝑥}suc 𝑦 {𝑥𝐴 ∣ Ind 𝑥}
16 df-bj-ind 10880 . 2 (Ind {𝑥𝐴 ∣ Ind 𝑥} ↔ (∅ ∈ {𝑥𝐴 ∣ Ind 𝑥} ∧ ∀𝑦 {𝑥𝐴 ∣ Ind 𝑥}suc 𝑦 {𝑥𝐴 ∣ Ind 𝑥}))
176, 15, 16mpbir2an 884 1 Ind {𝑥𝐴 ∣ Ind 𝑥}
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 1434  wral 2349  {crab 2353  c0 3258   cint 3644  suc csuc 4128  Ind wind 10879
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-nul 3912  ax-pr 3972  ax-un 4196  ax-bd0 10762  ax-bdor 10765  ax-bdex 10768  ax-bdeq 10769  ax-bdel 10770  ax-bdsb 10771  ax-bdsep 10833
This theorem depends on definitions:  df-bi 115  df-tru 1288  df-nf 1391  df-sb 1687  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ral 2354  df-rex 2355  df-rab 2358  df-v 2604  df-dif 2976  df-un 2978  df-nul 3259  df-sn 3412  df-pr 3413  df-uni 3610  df-int 3645  df-suc 4134  df-bdc 10790  df-bj-ind 10880
This theorem is referenced by:  bj-omind  10887
  Copyright terms: Public domain W3C validator