Mathbox for BJ < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-nfalt GIF version

Theorem bj-nfalt 10726
 Description: Closed form of nfal 1509 (copied from set.mm). (Contributed by BJ, 2-May-2019.)
Assertion
Ref Expression
bj-nfalt (∀𝑥𝑦𝜑 → Ⅎ𝑦𝑥𝜑)

Proof of Theorem bj-nfalt
StepHypRef Expression
1 df-nf 1391 . . . 4 (Ⅎ𝑦𝜑 ↔ ∀𝑦(𝜑 → ∀𝑦𝜑))
21albii 1400 . . 3 (∀𝑥𝑦𝜑 ↔ ∀𝑥𝑦(𝜑 → ∀𝑦𝜑))
3 bj-hbalt 10725 . . . . 5 (∀𝑥(𝜑 → ∀𝑦𝜑) → (∀𝑥𝜑 → ∀𝑦𝑥𝜑))
43alimi 1385 . . . 4 (∀𝑦𝑥(𝜑 → ∀𝑦𝜑) → ∀𝑦(∀𝑥𝜑 → ∀𝑦𝑥𝜑))
54alcoms 1406 . . 3 (∀𝑥𝑦(𝜑 → ∀𝑦𝜑) → ∀𝑦(∀𝑥𝜑 → ∀𝑦𝑥𝜑))
62, 5sylbi 119 . 2 (∀𝑥𝑦𝜑 → ∀𝑦(∀𝑥𝜑 → ∀𝑦𝑥𝜑))
7 df-nf 1391 . 2 (Ⅎ𝑦𝑥𝜑 ↔ ∀𝑦(∀𝑥𝜑 → ∀𝑦𝑥𝜑))
86, 7sylibr 132 1 (∀𝑥𝑦𝜑 → Ⅎ𝑦𝑥𝜑)
 Colors of variables: wff set class Syntax hints:   → wi 4  ∀wal 1283  Ⅎwnf 1390 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1377  ax-7 1378  ax-gen 1379 This theorem depends on definitions:  df-bi 115  df-nf 1391 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator