![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-nnen2lp | GIF version |
Description: A version of en2lp 4325 for natural numbers, which does not require
ax-setind 4308.
Note: using this theorem and bj-nnelirr 11033, one can remove dependency on ax-setind 4308 from nntri2 6159 and nndcel 6165; one can actually remove more dependencies from these. (Contributed by BJ, 28-Nov-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-nnen2lp | ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ¬ (𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-nnelirr 11033 | . . 3 ⊢ (𝐵 ∈ ω → ¬ 𝐵 ∈ 𝐵) | |
2 | 1 | adantl 271 | . 2 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ¬ 𝐵 ∈ 𝐵) |
3 | bj-nntrans 11031 | . . . . 5 ⊢ (𝐵 ∈ ω → (𝐴 ∈ 𝐵 → 𝐴 ⊆ 𝐵)) | |
4 | 3 | adantl 271 | . . . 4 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ∈ 𝐵 → 𝐴 ⊆ 𝐵)) |
5 | ssel 3002 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → (𝐵 ∈ 𝐴 → 𝐵 ∈ 𝐵)) | |
6 | 4, 5 | syl6 33 | . . 3 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ∈ 𝐵 → (𝐵 ∈ 𝐴 → 𝐵 ∈ 𝐵))) |
7 | 6 | impd 251 | . 2 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐴) → 𝐵 ∈ 𝐵)) |
8 | 2, 7 | mtod 622 | 1 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ¬ (𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐴)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 102 ∈ wcel 1434 ⊆ wss 2982 ωcom 4359 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 577 ax-in2 578 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-13 1445 ax-14 1446 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2065 ax-nul 3924 ax-pr 3992 ax-un 4216 ax-bd0 10889 ax-bdor 10892 ax-bdn 10893 ax-bdal 10894 ax-bdex 10895 ax-bdeq 10896 ax-bdel 10897 ax-bdsb 10898 ax-bdsep 10960 ax-infvn 11021 |
This theorem depends on definitions: df-bi 115 df-tru 1288 df-nf 1391 df-sb 1688 df-clab 2070 df-cleq 2076 df-clel 2079 df-nfc 2212 df-ral 2358 df-rex 2359 df-rab 2362 df-v 2612 df-dif 2984 df-un 2986 df-in 2988 df-ss 2995 df-nul 3268 df-sn 3422 df-pr 3423 df-uni 3622 df-int 3657 df-suc 4154 df-iom 4360 df-bdc 10917 df-bj-ind 11007 |
This theorem is referenced by: bj-peano4 11035 |
Copyright terms: Public domain | W3C validator |