![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-omord | GIF version |
Description: The set ω is an ordinal. Constructive proof of ordom 4375. (Contributed by BJ, 29-Dec-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-omord | ⊢ Ord ω |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-omtrans2 11019 | . 2 ⊢ Tr ω | |
2 | bj-nntrans2 11014 | . . 3 ⊢ (𝑥 ∈ ω → Tr 𝑥) | |
3 | 2 | rgen 2421 | . 2 ⊢ ∀𝑥 ∈ ω Tr 𝑥 |
4 | dford3 4150 | . 2 ⊢ (Ord ω ↔ (Tr ω ∧ ∀𝑥 ∈ ω Tr 𝑥)) | |
5 | 1, 3, 4 | mpbir2an 884 | 1 ⊢ Ord ω |
Colors of variables: wff set class |
Syntax hints: ∀wral 2353 Tr wtr 3895 Ord word 4145 ωcom 4359 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 577 ax-in2 578 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-13 1445 ax-14 1446 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2065 ax-nul 3924 ax-pr 3992 ax-un 4216 ax-bd0 10871 ax-bdor 10874 ax-bdal 10876 ax-bdex 10877 ax-bdeq 10878 ax-bdel 10879 ax-bdsb 10880 ax-bdsep 10942 ax-infvn 11003 |
This theorem depends on definitions: df-bi 115 df-tru 1288 df-nf 1391 df-sb 1688 df-clab 2070 df-cleq 2076 df-clel 2079 df-nfc 2212 df-ral 2358 df-rex 2359 df-rab 2362 df-v 2612 df-dif 2984 df-un 2986 df-in 2988 df-ss 2995 df-nul 3268 df-sn 3422 df-pr 3423 df-uni 3622 df-int 3657 df-tr 3896 df-iord 4149 df-suc 4154 df-iom 4360 df-bdc 10899 df-bj-ind 10989 |
This theorem is referenced by: bj-omelon 11023 |
Copyright terms: Public domain | W3C validator |