![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-sbime | GIF version |
Description: A strengthening of sbie 1715 (same proof). (Contributed by BJ, 16-Dec-2019.) |
Ref | Expression |
---|---|
bj-sbime.nf | ⊢ Ⅎ𝑥𝜓 |
bj-sbime.1 | ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) |
Ref | Expression |
---|---|
bj-sbime | ⊢ ([𝑦 / 𝑥]𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-sbime.nf | . . 3 ⊢ Ⅎ𝑥𝜓 | |
2 | 1 | nfri 1453 | . 2 ⊢ (𝜓 → ∀𝑥𝜓) |
3 | bj-sbime.1 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) | |
4 | 2, 3 | bj-sbimeh 10734 | 1 ⊢ ([𝑦 / 𝑥]𝜑 → 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 Ⅎwnf 1390 [wsb 1686 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1377 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-4 1441 ax-ial 1468 |
This theorem depends on definitions: df-bi 115 df-tru 1288 df-nf 1391 df-sb 1687 |
This theorem is referenced by: setindis 10920 bdsetindis 10922 |
Copyright terms: Public domain | W3C validator |