![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-sels | GIF version |
Description: If a class is a set, then it is a member of a set. (Copied from set.mm.) (Contributed by BJ, 3-Apr-2019.) |
Ref | Expression |
---|---|
bj-sels | ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝐴 ∈ 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snidg 3425 | . . 3 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ {𝐴}) | |
2 | bj-snexg 10846 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → {𝐴} ∈ V) | |
3 | sbcel2g 2928 | . . . . 5 ⊢ ({𝐴} ∈ V → ([{𝐴} / 𝑥]𝐴 ∈ 𝑥 ↔ 𝐴 ∈ ⦋{𝐴} / 𝑥⦌𝑥)) | |
4 | 2, 3 | syl 14 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ([{𝐴} / 𝑥]𝐴 ∈ 𝑥 ↔ 𝐴 ∈ ⦋{𝐴} / 𝑥⦌𝑥)) |
5 | csbvarg 2934 | . . . . . 6 ⊢ ({𝐴} ∈ V → ⦋{𝐴} / 𝑥⦌𝑥 = {𝐴}) | |
6 | 2, 5 | syl 14 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → ⦋{𝐴} / 𝑥⦌𝑥 = {𝐴}) |
7 | 6 | eleq2d 2149 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ ⦋{𝐴} / 𝑥⦌𝑥 ↔ 𝐴 ∈ {𝐴})) |
8 | 4, 7 | bitrd 186 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ([{𝐴} / 𝑥]𝐴 ∈ 𝑥 ↔ 𝐴 ∈ {𝐴})) |
9 | 1, 8 | mpbird 165 | . 2 ⊢ (𝐴 ∈ 𝑉 → [{𝐴} / 𝑥]𝐴 ∈ 𝑥) |
10 | 9 | spesbcd 2901 | 1 ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝐴 ∈ 𝑥) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 103 = wceq 1285 ∃wex 1422 ∈ wcel 1434 Vcvv 2602 [wsbc 2816 ⦋csb 2909 {csn 3400 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-14 1446 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2064 ax-pr 3966 ax-bdor 10750 ax-bdeq 10754 ax-bdsep 10818 |
This theorem depends on definitions: df-bi 115 df-tru 1288 df-nf 1391 df-sb 1687 df-clab 2069 df-cleq 2075 df-clel 2078 df-nfc 2209 df-rex 2355 df-v 2604 df-sbc 2817 df-csb 2910 df-un 2978 df-sn 3406 df-pr 3407 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |