![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-snexg | GIF version |
Description: snexg 3964 from bounded separation. (Contributed by BJ, 5-Oct-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-snexg | ⊢ (𝐴 ∈ 𝑉 → {𝐴} ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfsn2 3420 | . 2 ⊢ {𝐴} = {𝐴, 𝐴} | |
2 | bj-prexg 10860 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) → {𝐴, 𝐴} ∈ V) | |
3 | 2 | anidms 389 | . 2 ⊢ (𝐴 ∈ 𝑉 → {𝐴, 𝐴} ∈ V) |
4 | 1, 3 | syl5eqel 2166 | 1 ⊢ (𝐴 ∈ 𝑉 → {𝐴} ∈ V) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 1434 Vcvv 2602 {csn 3406 {cpr 3407 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-14 1446 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2064 ax-pr 3972 ax-bdor 10765 ax-bdeq 10769 ax-bdsep 10833 |
This theorem depends on definitions: df-bi 115 df-tru 1288 df-nf 1391 df-sb 1687 df-clab 2069 df-cleq 2075 df-clel 2078 df-nfc 2209 df-v 2604 df-un 2978 df-sn 3412 df-pr 3413 |
This theorem is referenced by: bj-snex 10862 bj-sels 10863 bj-sucexg 10871 |
Copyright terms: Public domain | W3C validator |