Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-uniex2 GIF version

Theorem bj-uniex2 13114
Description: uniex2 4358 from bounded separation. (Contributed by BJ, 15-Oct-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-uniex2 𝑦 𝑦 = 𝑥
Distinct variable group:   𝑥,𝑦

Proof of Theorem bj-uniex2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 bdcuni 13074 . . . 4 BOUNDED 𝑥
21bdeli 13044 . . 3 BOUNDED 𝑧 𝑥
3 zfun 4356 . . . 4 𝑦𝑧(∃𝑦(𝑧𝑦𝑦𝑥) → 𝑧𝑦)
4 eluni 3739 . . . . . . 7 (𝑧 𝑥 ↔ ∃𝑦(𝑧𝑦𝑦𝑥))
54imbi1i 237 . . . . . 6 ((𝑧 𝑥𝑧𝑦) ↔ (∃𝑦(𝑧𝑦𝑦𝑥) → 𝑧𝑦))
65albii 1446 . . . . 5 (∀𝑧(𝑧 𝑥𝑧𝑦) ↔ ∀𝑧(∃𝑦(𝑧𝑦𝑦𝑥) → 𝑧𝑦))
76exbii 1584 . . . 4 (∃𝑦𝑧(𝑧 𝑥𝑧𝑦) ↔ ∃𝑦𝑧(∃𝑦(𝑧𝑦𝑦𝑥) → 𝑧𝑦))
83, 7mpbir 145 . . 3 𝑦𝑧(𝑧 𝑥𝑧𝑦)
92, 8bdbm1.3ii 13089 . 2 𝑦𝑧(𝑧𝑦𝑧 𝑥)
10 dfcleq 2133 . . 3 (𝑦 = 𝑥 ↔ ∀𝑧(𝑧𝑦𝑧 𝑥))
1110exbii 1584 . 2 (∃𝑦 𝑦 = 𝑥 ↔ ∃𝑦𝑧(𝑧𝑦𝑧 𝑥))
129, 11mpbir 145 1 𝑦 𝑦 = 𝑥
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wal 1329   = wceq 1331  wex 1468  wcel 1480   cuni 3736
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-un 4355  ax-bd0 13011  ax-bdex 13017  ax-bdel 13019  ax-bdsb 13020  ax-bdsep 13082
This theorem depends on definitions:  df-bi 116  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-rex 2422  df-v 2688  df-uni 3737  df-bdc 13039
This theorem is referenced by:  bj-uniex  13115
  Copyright terms: Public domain W3C validator