ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bndndx GIF version

Theorem bndndx 8238
Description: A bounded real sequence 𝐴(𝑘) is less than or equal to at least one of its indices. (Contributed by NM, 18-Jan-2008.)
Assertion
Ref Expression
bndndx (∃𝑥 ∈ ℝ ∀𝑘 ∈ ℕ (𝐴 ∈ ℝ ∧ 𝐴𝑥) → ∃𝑘 ∈ ℕ 𝐴𝑘)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑘
Allowed substitution hint:   𝐴(𝑘)

Proof of Theorem bndndx
StepHypRef Expression
1 arch 8236 . . . 4 (𝑥 ∈ ℝ → ∃𝑘 ∈ ℕ 𝑥 < 𝑘)
2 nnre 7997 . . . . . 6 (𝑘 ∈ ℕ → 𝑘 ∈ ℝ)
3 lelttr 7165 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℝ) → ((𝐴𝑥𝑥 < 𝑘) → 𝐴 < 𝑘))
4 ltle 7164 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℝ) → (𝐴 < 𝑘𝐴𝑘))
543adant2 934 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℝ) → (𝐴 < 𝑘𝐴𝑘))
63, 5syld 44 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℝ) → ((𝐴𝑥𝑥 < 𝑘) → 𝐴𝑘))
76exp5o 1134 . . . . . . . . 9 (𝐴 ∈ ℝ → (𝑥 ∈ ℝ → (𝑘 ∈ ℝ → (𝐴𝑥 → (𝑥 < 𝑘𝐴𝑘)))))
87com3l 79 . . . . . . . 8 (𝑥 ∈ ℝ → (𝑘 ∈ ℝ → (𝐴 ∈ ℝ → (𝐴𝑥 → (𝑥 < 𝑘𝐴𝑘)))))
98imp4b 336 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℝ) → ((𝐴 ∈ ℝ ∧ 𝐴𝑥) → (𝑥 < 𝑘𝐴𝑘)))
109com23 76 . . . . . 6 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℝ) → (𝑥 < 𝑘 → ((𝐴 ∈ ℝ ∧ 𝐴𝑥) → 𝐴𝑘)))
112, 10sylan2 274 . . . . 5 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → (𝑥 < 𝑘 → ((𝐴 ∈ ℝ ∧ 𝐴𝑥) → 𝐴𝑘)))
1211reximdva 2438 . . . 4 (𝑥 ∈ ℝ → (∃𝑘 ∈ ℕ 𝑥 < 𝑘 → ∃𝑘 ∈ ℕ ((𝐴 ∈ ℝ ∧ 𝐴𝑥) → 𝐴𝑘)))
131, 12mpd 13 . . 3 (𝑥 ∈ ℝ → ∃𝑘 ∈ ℕ ((𝐴 ∈ ℝ ∧ 𝐴𝑥) → 𝐴𝑘))
14 r19.35-1 2477 . . 3 (∃𝑘 ∈ ℕ ((𝐴 ∈ ℝ ∧ 𝐴𝑥) → 𝐴𝑘) → (∀𝑘 ∈ ℕ (𝐴 ∈ ℝ ∧ 𝐴𝑥) → ∃𝑘 ∈ ℕ 𝐴𝑘))
1513, 14syl 14 . 2 (𝑥 ∈ ℝ → (∀𝑘 ∈ ℕ (𝐴 ∈ ℝ ∧ 𝐴𝑥) → ∃𝑘 ∈ ℕ 𝐴𝑘))
1615rexlimiv 2444 1 (∃𝑥 ∈ ℝ ∀𝑘 ∈ ℕ (𝐴 ∈ ℝ ∧ 𝐴𝑥) → ∃𝑘 ∈ ℕ 𝐴𝑘)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 101  w3a 896  wcel 1409  wral 2323  wrex 2324   class class class wbr 3792  cr 6946   < clt 7119  cle 7120  cn 7990
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-13 1420  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-sep 3903  ax-pow 3955  ax-pr 3972  ax-un 4198  ax-setind 4290  ax-cnex 7033  ax-resscn 7034  ax-1re 7036  ax-addrcl 7039  ax-pre-ltirr 7054  ax-pre-ltwlin 7055  ax-pre-lttrn 7056  ax-arch 7061
This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-fal 1265  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ne 2221  df-nel 2315  df-ral 2328  df-rex 2329  df-rab 2332  df-v 2576  df-dif 2948  df-un 2950  df-in 2952  df-ss 2959  df-pw 3389  df-sn 3409  df-pr 3410  df-op 3412  df-uni 3609  df-int 3644  df-br 3793  df-opab 3847  df-xp 4379  df-cnv 4381  df-pnf 7121  df-mnf 7122  df-xr 7123  df-ltxr 7124  df-le 7125  df-inn 7991
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator