ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  brab1 GIF version

Theorem brab1 3837
Description: Relationship between a binary relation and a class abstraction. (Contributed by Andrew Salmon, 8-Jul-2011.)
Assertion
Ref Expression
brab1 (𝑥𝑅𝐴𝑥 ∈ {𝑧𝑧𝑅𝐴})
Distinct variable groups:   𝑧,𝐴   𝑧,𝑅
Allowed substitution hints:   𝐴(𝑥)   𝑅(𝑥)

Proof of Theorem brab1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 vex 2577 . . 3 𝑥 ∈ V
2 breq1 3795 . . . 4 (𝑧 = 𝑦 → (𝑧𝑅𝐴𝑦𝑅𝐴))
3 breq1 3795 . . . 4 (𝑦 = 𝑥 → (𝑦𝑅𝐴𝑥𝑅𝐴))
42, 3sbcie2g 2819 . . 3 (𝑥 ∈ V → ([𝑥 / 𝑧]𝑧𝑅𝐴𝑥𝑅𝐴))
51, 4ax-mp 7 . 2 ([𝑥 / 𝑧]𝑧𝑅𝐴𝑥𝑅𝐴)
6 df-sbc 2788 . 2 ([𝑥 / 𝑧]𝑧𝑅𝐴𝑥 ∈ {𝑧𝑧𝑅𝐴})
75, 6bitr3i 179 1 (𝑥𝑅𝐴𝑥 ∈ {𝑧𝑧𝑅𝐴})
Colors of variables: wff set class
Syntax hints:  wb 102  wcel 1409  {cab 2042  Vcvv 2574  [wsbc 2787   class class class wbr 3792
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038
This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-nf 1366  df-sb 1662  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-v 2576  df-sbc 2788  df-un 2950  df-sn 3409  df-pr 3410  df-op 3412  df-br 3793
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator