ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  brdomg GIF version

Theorem brdomg 6260
Description: Dominance relation. (Contributed by NM, 15-Jun-1998.)
Assertion
Ref Expression
brdomg (𝐵𝐶 → (𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1𝐵))
Distinct variable groups:   𝐴,𝑓   𝐵,𝑓
Allowed substitution hint:   𝐶(𝑓)

Proof of Theorem brdomg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reldom 6257 . . . 4 Rel ≼
21brrelexi 4412 . . 3 (𝐴𝐵𝐴 ∈ V)
32a1i 9 . 2 (𝐵𝐶 → (𝐴𝐵𝐴 ∈ V))
4 f1f 5120 . . . . 5 (𝑓:𝐴1-1𝐵𝑓:𝐴𝐵)
5 fdm 5078 . . . . . 6 (𝑓:𝐴𝐵 → dom 𝑓 = 𝐴)
6 vex 2577 . . . . . . 7 𝑓 ∈ V
76dmex 4626 . . . . . 6 dom 𝑓 ∈ V
85, 7syl6eqelr 2145 . . . . 5 (𝑓:𝐴𝐵𝐴 ∈ V)
94, 8syl 14 . . . 4 (𝑓:𝐴1-1𝐵𝐴 ∈ V)
109exlimiv 1505 . . 3 (∃𝑓 𝑓:𝐴1-1𝐵𝐴 ∈ V)
1110a1i 9 . 2 (𝐵𝐶 → (∃𝑓 𝑓:𝐴1-1𝐵𝐴 ∈ V))
12 f1eq2 5116 . . . . 5 (𝑥 = 𝐴 → (𝑓:𝑥1-1𝑦𝑓:𝐴1-1𝑦))
1312exbidv 1722 . . . 4 (𝑥 = 𝐴 → (∃𝑓 𝑓:𝑥1-1𝑦 ↔ ∃𝑓 𝑓:𝐴1-1𝑦))
14 f1eq3 5117 . . . . 5 (𝑦 = 𝐵 → (𝑓:𝐴1-1𝑦𝑓:𝐴1-1𝐵))
1514exbidv 1722 . . . 4 (𝑦 = 𝐵 → (∃𝑓 𝑓:𝐴1-1𝑦 ↔ ∃𝑓 𝑓:𝐴1-1𝐵))
16 df-dom 6254 . . . 4 ≼ = {⟨𝑥, 𝑦⟩ ∣ ∃𝑓 𝑓:𝑥1-1𝑦}
1713, 15, 16brabg 4034 . . 3 ((𝐴 ∈ V ∧ 𝐵𝐶) → (𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1𝐵))
1817expcom 113 . 2 (𝐵𝐶 → (𝐴 ∈ V → (𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1𝐵)))
193, 11, 18pm5.21ndd 631 1 (𝐵𝐶 → (𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 102   = wceq 1259  wex 1397  wcel 1409  Vcvv 2574   class class class wbr 3792  dom cdm 4373  wf 4926  1-1wf1 4927  cdom 6251
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-13 1420  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-sep 3903  ax-pow 3955  ax-pr 3972  ax-un 4198
This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ral 2328  df-rex 2329  df-v 2576  df-un 2950  df-in 2952  df-ss 2959  df-pw 3389  df-sn 3409  df-pr 3410  df-op 3412  df-uni 3609  df-br 3793  df-opab 3847  df-xp 4379  df-rel 4380  df-cnv 4381  df-dm 4383  df-rn 4384  df-fn 4933  df-f 4934  df-f1 4935  df-dom 6254
This theorem is referenced by:  brdomi  6261  brdom  6262  f1dom2g  6267  f1domg  6269  dom3d  6285  phplem4dom  6355
  Copyright terms: Public domain W3C validator