ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  brelrn GIF version

Theorem brelrn 4594
Description: The second argument of a binary relation belongs to its range. (Contributed by NM, 13-Aug-2004.)
Hypotheses
Ref Expression
brelrn.1 𝐴 ∈ V
brelrn.2 𝐵 ∈ V
Assertion
Ref Expression
brelrn (𝐴𝐶𝐵𝐵 ∈ ran 𝐶)

Proof of Theorem brelrn
StepHypRef Expression
1 brelrn.1 . 2 𝐴 ∈ V
2 brelrn.2 . 2 𝐵 ∈ V
3 brelrng 4592 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐴𝐶𝐵) → 𝐵 ∈ ran 𝐶)
41, 2, 3mp3an12 1233 1 (𝐴𝐶𝐵𝐵 ∈ ran 𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 1409  Vcvv 2574   class class class wbr 3791  ran crn 4373
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-sep 3902  ax-pow 3954  ax-pr 3971
This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-v 2576  df-un 2949  df-in 2951  df-ss 2958  df-pw 3388  df-sn 3408  df-pr 3409  df-op 3411  df-br 3792  df-opab 3846  df-cnv 4380  df-dm 4382  df-rn 4383
This theorem is referenced by:  opelrn  4595  dfco2a  4848  cores  4851  dffun9  4957  funcnv  4987  rntpos  5902  tfrexlem  5978
  Copyright terms: Public domain W3C validator