ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  breq2i GIF version

Theorem breq2i 3772
Description: Equality inference for a binary relation. (Contributed by NM, 8-Feb-1996.)
Hypothesis
Ref Expression
breq1i.1 𝐴 = 𝐵
Assertion
Ref Expression
breq2i (𝐶𝑅𝐴𝐶𝑅𝐵)

Proof of Theorem breq2i
StepHypRef Expression
1 breq1i.1 . 2 𝐴 = 𝐵
2 breq2 3768 . 2 (𝐴 = 𝐵 → (𝐶𝑅𝐴𝐶𝑅𝐵))
31, 2ax-mp 7 1 (𝐶𝑅𝐴𝐶𝑅𝐵)
Colors of variables: wff set class
Syntax hints:  wb 98   = wceq 1243   class class class wbr 3764
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-v 2559  df-un 2922  df-sn 3381  df-pr 3382  df-op 3384  df-br 3765
This theorem is referenced by:  breqtri  3787  en1  6279  snnen2og  6322  caucvgprprlemval  6784  caucvgprprlemmu  6791  caucvgsr  6884  pitonnlem1  6919  lt0neg2  7462  le0neg2  7464  negap0  7618  recexaplem2  7631  recgt1  7861  crap0  7908  addltmul  8159  nn0lt10b  8319  nn0lt2  8320  xlt0neg2  8750  xle0neg2  8752  iccshftr  8860  iccshftl  8862  iccdil  8864  icccntr  8866  cjap0  9481  abs00ap  9634
  Copyright terms: Public domain W3C validator