ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  breqi GIF version

Theorem breqi 3798
Description: Equality inference for binary relations. (Contributed by NM, 19-Feb-2005.)
Hypothesis
Ref Expression
breqi.1 𝑅 = 𝑆
Assertion
Ref Expression
breqi (𝐴𝑅𝐵𝐴𝑆𝐵)

Proof of Theorem breqi
StepHypRef Expression
1 breqi.1 . 2 𝑅 = 𝑆
2 breq 3794 . 2 (𝑅 = 𝑆 → (𝐴𝑅𝐵𝐴𝑆𝐵))
31, 2ax-mp 7 1 (𝐴𝑅𝐵𝐴𝑆𝐵)
Colors of variables: wff set class
Syntax hints:  wb 102   = wceq 1259   class class class wbr 3792
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-5 1352  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-4 1416  ax-17 1435  ax-ial 1443  ax-ext 2038
This theorem depends on definitions:  df-bi 114  df-cleq 2049  df-clel 2052  df-br 3793
This theorem is referenced by:  f1ompt  5348  brtpos2  5897  tfrexlem  5979  brdifun  6164  ltpiord  6475  ltxrlt  7144  ltxr  8796
  Copyright terms: Public domain W3C validator