ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  brrelex GIF version

Theorem brrelex 4410
Description: A true binary relation on a relation implies the first argument is a set. (This is a property of our ordered pair definition.) (Contributed by NM, 18-May-2004.) (Revised by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
brrelex ((Rel 𝑅𝐴𝑅𝐵) → 𝐴 ∈ V)

Proof of Theorem brrelex
StepHypRef Expression
1 brrelex12 4409 . 2 ((Rel 𝑅𝐴𝑅𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
21simpld 109 1 ((Rel 𝑅𝐴𝑅𝐵) → 𝐴 ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 101  wcel 1409  Vcvv 2574   class class class wbr 3792  Rel wrel 4378
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-sep 3903  ax-pow 3955  ax-pr 3972
This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-nf 1366  df-sb 1662  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ral 2328  df-rex 2329  df-v 2576  df-un 2950  df-in 2952  df-ss 2959  df-pw 3389  df-sn 3409  df-pr 3410  df-op 3412  df-br 3793  df-opab 3847  df-xp 4379  df-rel 4380
This theorem is referenced by:  brrelexi  4412  releldm  4597  relelrn  4598  funmo  4945  ertr  6152
  Copyright terms: Public domain W3C validator