ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  c0ex GIF version

Theorem c0ex 7049
Description: 0 is a set (common case). (Contributed by David A. Wheeler, 7-Jul-2016.)
Assertion
Ref Expression
c0ex 0 ∈ V

Proof of Theorem c0ex
StepHypRef Expression
1 0cn 7047 . 2 0 ∈ ℂ
21elexi 2582 1 0 ∈ V
Colors of variables: wff set class
Syntax hints:  wcel 1407  Vcvv 2572  cc 6915  0cc0 6917
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-5 1350  ax-gen 1352  ax-ie1 1396  ax-ie2 1397  ax-8 1409  ax-4 1414  ax-17 1433  ax-i9 1437  ax-ial 1441  ax-ext 2036  ax-1cn 7005  ax-icn 7007  ax-addcl 7008  ax-mulcl 7010  ax-i2m1 7017
This theorem depends on definitions:  df-bi 114  df-sb 1660  df-clab 2041  df-cleq 2047  df-clel 2050  df-v 2574
This theorem is referenced by:  elnn0  8211  nn0ex  8215  un0mulcl  8243  nn0ssz  8290  nn0ind-raph  8384  iser0f  9381  facnn  9559  fac0  9560  iserige0  10057
  Copyright terms: Public domain W3C validator