Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  c0ex GIF version

Theorem c0ex 7175
 Description: 0 is a set (common case). (Contributed by David A. Wheeler, 7-Jul-2016.)
Assertion
Ref Expression
c0ex 0 ∈ V

Proof of Theorem c0ex
StepHypRef Expression
1 0cn 7173 . 2 0 ∈ ℂ
21elexi 2612 1 0 ∈ V
 Colors of variables: wff set class Syntax hints:   ∈ wcel 1434  Vcvv 2602  ℂcc 7041  0cc0 7043 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1377  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-ext 2064  ax-1cn 7131  ax-icn 7133  ax-addcl 7134  ax-mulcl 7136  ax-i2m1 7143 This theorem depends on definitions:  df-bi 115  df-sb 1687  df-clab 2069  df-cleq 2075  df-clel 2078  df-v 2604 This theorem is referenced by:  elnn0  8357  nn0ex  8361  un0mulcl  8389  nn0ssz  8450  nn0ind-raph  8545  iser0f  9569  facnn  9751  fac0  9752  prsize2ex  9833  iserige0  10319  bezoutlemmain  10531  lcmval  10589
 Copyright terms: Public domain W3C validator