ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caovordig GIF version

Theorem caovordig 5904
Description: Convert an operation ordering law to class notation. (Contributed by Mario Carneiro, 31-Dec-2014.)
Hypothesis
Ref Expression
caovordig.1 ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → (𝑥𝑅𝑦 → (𝑧𝐹𝑥)𝑅(𝑧𝐹𝑦)))
Assertion
Ref Expression
caovordig ((𝜑 ∧ (𝐴𝑆𝐵𝑆𝐶𝑆)) → (𝐴𝑅𝐵 → (𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵)))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧   𝑥,𝐶,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧   𝑥,𝐹,𝑦,𝑧   𝑥,𝑅,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧

Proof of Theorem caovordig
StepHypRef Expression
1 caovordig.1 . . 3 ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → (𝑥𝑅𝑦 → (𝑧𝐹𝑥)𝑅(𝑧𝐹𝑦)))
21ralrimivvva 2492 . 2 (𝜑 → ∀𝑥𝑆𝑦𝑆𝑧𝑆 (𝑥𝑅𝑦 → (𝑧𝐹𝑥)𝑅(𝑧𝐹𝑦)))
3 breq1 3902 . . . 4 (𝑥 = 𝐴 → (𝑥𝑅𝑦𝐴𝑅𝑦))
4 oveq2 5750 . . . . 5 (𝑥 = 𝐴 → (𝑧𝐹𝑥) = (𝑧𝐹𝐴))
54breq1d 3909 . . . 4 (𝑥 = 𝐴 → ((𝑧𝐹𝑥)𝑅(𝑧𝐹𝑦) ↔ (𝑧𝐹𝐴)𝑅(𝑧𝐹𝑦)))
63, 5imbi12d 233 . . 3 (𝑥 = 𝐴 → ((𝑥𝑅𝑦 → (𝑧𝐹𝑥)𝑅(𝑧𝐹𝑦)) ↔ (𝐴𝑅𝑦 → (𝑧𝐹𝐴)𝑅(𝑧𝐹𝑦))))
7 breq2 3903 . . . 4 (𝑦 = 𝐵 → (𝐴𝑅𝑦𝐴𝑅𝐵))
8 oveq2 5750 . . . . 5 (𝑦 = 𝐵 → (𝑧𝐹𝑦) = (𝑧𝐹𝐵))
98breq2d 3911 . . . 4 (𝑦 = 𝐵 → ((𝑧𝐹𝐴)𝑅(𝑧𝐹𝑦) ↔ (𝑧𝐹𝐴)𝑅(𝑧𝐹𝐵)))
107, 9imbi12d 233 . . 3 (𝑦 = 𝐵 → ((𝐴𝑅𝑦 → (𝑧𝐹𝐴)𝑅(𝑧𝐹𝑦)) ↔ (𝐴𝑅𝐵 → (𝑧𝐹𝐴)𝑅(𝑧𝐹𝐵))))
11 oveq1 5749 . . . . 5 (𝑧 = 𝐶 → (𝑧𝐹𝐴) = (𝐶𝐹𝐴))
12 oveq1 5749 . . . . 5 (𝑧 = 𝐶 → (𝑧𝐹𝐵) = (𝐶𝐹𝐵))
1311, 12breq12d 3912 . . . 4 (𝑧 = 𝐶 → ((𝑧𝐹𝐴)𝑅(𝑧𝐹𝐵) ↔ (𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵)))
1413imbi2d 229 . . 3 (𝑧 = 𝐶 → ((𝐴𝑅𝐵 → (𝑧𝐹𝐴)𝑅(𝑧𝐹𝐵)) ↔ (𝐴𝑅𝐵 → (𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵))))
156, 10, 14rspc3v 2779 . 2 ((𝐴𝑆𝐵𝑆𝐶𝑆) → (∀𝑥𝑆𝑦𝑆𝑧𝑆 (𝑥𝑅𝑦 → (𝑧𝐹𝑥)𝑅(𝑧𝐹𝑦)) → (𝐴𝑅𝐵 → (𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵))))
162, 15mpan9 279 1 ((𝜑 ∧ (𝐴𝑆𝐵𝑆𝐶𝑆)) → (𝐴𝑅𝐵 → (𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 947   = wceq 1316  wcel 1465  wral 2393   class class class wbr 3899  (class class class)co 5742
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 683  ax-5 1408  ax-7 1409  ax-gen 1410  ax-ie1 1454  ax-ie2 1455  ax-8 1467  ax-10 1468  ax-11 1469  ax-i12 1470  ax-bndl 1471  ax-4 1472  ax-17 1491  ax-i9 1495  ax-ial 1499  ax-i5r 1500  ax-ext 2099
This theorem depends on definitions:  df-bi 116  df-3an 949  df-tru 1319  df-nf 1422  df-sb 1721  df-clab 2104  df-cleq 2110  df-clel 2113  df-nfc 2247  df-ral 2398  df-rex 2399  df-v 2662  df-un 3045  df-sn 3503  df-pr 3504  df-op 3506  df-uni 3707  df-br 3900  df-iota 5058  df-fv 5101  df-ov 5745
This theorem is referenced by:  caovordid  5905
  Copyright terms: Public domain W3C validator