ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cardcl GIF version

Theorem cardcl 7037
Description: The cardinality of a well-orderable set is an ordinal. (Contributed by Jim Kingdon, 30-Aug-2021.)
Assertion
Ref Expression
cardcl (∃𝑦 ∈ On 𝑦𝐴 → (card‘𝐴) ∈ On)
Distinct variable group:   𝑦,𝐴

Proof of Theorem cardcl
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-card 7036 . . . 4 card = (𝑥 ∈ V ↦ {𝑦 ∈ On ∣ 𝑦𝑥})
21a1i 9 . . 3 (∃𝑦 ∈ On 𝑦𝐴 → card = (𝑥 ∈ V ↦ {𝑦 ∈ On ∣ 𝑦𝑥}))
3 breq2 3933 . . . . . 6 (𝑥 = 𝐴 → (𝑦𝑥𝑦𝐴))
43rabbidv 2675 . . . . 5 (𝑥 = 𝐴 → {𝑦 ∈ On ∣ 𝑦𝑥} = {𝑦 ∈ On ∣ 𝑦𝐴})
54inteqd 3776 . . . 4 (𝑥 = 𝐴 {𝑦 ∈ On ∣ 𝑦𝑥} = {𝑦 ∈ On ∣ 𝑦𝐴})
65adantl 275 . . 3 ((∃𝑦 ∈ On 𝑦𝐴𝑥 = 𝐴) → {𝑦 ∈ On ∣ 𝑦𝑥} = {𝑦 ∈ On ∣ 𝑦𝐴})
7 encv 6640 . . . . 5 (𝑦𝐴 → (𝑦 ∈ V ∧ 𝐴 ∈ V))
87simprd 113 . . . 4 (𝑦𝐴𝐴 ∈ V)
98rexlimivw 2545 . . 3 (∃𝑦 ∈ On 𝑦𝐴𝐴 ∈ V)
10 intexrabim 4078 . . 3 (∃𝑦 ∈ On 𝑦𝐴 {𝑦 ∈ On ∣ 𝑦𝐴} ∈ V)
112, 6, 9, 10fvmptd 5502 . 2 (∃𝑦 ∈ On 𝑦𝐴 → (card‘𝐴) = {𝑦 ∈ On ∣ 𝑦𝐴})
12 onintrab2im 4434 . 2 (∃𝑦 ∈ On 𝑦𝐴 {𝑦 ∈ On ∣ 𝑦𝐴} ∈ On)
1311, 12eqeltrd 2216 1 (∃𝑦 ∈ On 𝑦𝐴 → (card‘𝐴) ∈ On)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1331  wcel 1480  wrex 2417  {crab 2420  Vcvv 2686   cint 3771   class class class wbr 3929  cmpt 3989  Oncon0 4285  cfv 5123  cen 6632  cardccrd 7035
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-iord 4288  df-on 4290  df-suc 4293  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-iota 5088  df-fun 5125  df-fv 5131  df-en 6635  df-card 7036
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator