Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  cardonle GIF version

Theorem cardonle 6425
 Description: The cardinal of an ordinal number is less than or equal to the ordinal number. Proposition 10.6(3) of [TakeutiZaring] p. 85. (Contributed by NM, 22-Oct-2003.)
Assertion
Ref Expression
cardonle (𝐴 ∈ On → (card‘𝐴) ⊆ 𝐴)

Proof of Theorem cardonle
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 oncardval 6424 . 2 (𝐴 ∈ On → (card‘𝐴) = {𝑥 ∈ On ∣ 𝑥𝐴})
2 enrefg 6275 . . 3 (𝐴 ∈ On → 𝐴𝐴)
3 breq1 3795 . . . 4 (𝑥 = 𝐴 → (𝑥𝐴𝐴𝐴))
43intminss 3668 . . 3 ((𝐴 ∈ On ∧ 𝐴𝐴) → {𝑥 ∈ On ∣ 𝑥𝐴} ⊆ 𝐴)
52, 4mpdan 406 . 2 (𝐴 ∈ On → {𝑥 ∈ On ∣ 𝑥𝐴} ⊆ 𝐴)
61, 5eqsstrd 3007 1 (𝐴 ∈ On → (card‘𝐴) ⊆ 𝐴)
 Colors of variables: wff set class Syntax hints:   → wi 4   ∈ wcel 1409  {crab 2327   ⊆ wss 2945  ∩ cint 3643   class class class wbr 3792  Oncon0 4128  ‘cfv 4930   ≈ cen 6250  cardccrd 6417 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-13 1420  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-sep 3903  ax-pow 3955  ax-pr 3972  ax-un 4198 This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ral 2328  df-rex 2329  df-rab 2332  df-v 2576  df-sbc 2788  df-un 2950  df-in 2952  df-ss 2959  df-pw 3389  df-sn 3409  df-pr 3410  df-op 3412  df-uni 3609  df-int 3644  df-br 3793  df-opab 3847  df-mpt 3848  df-id 4058  df-xp 4379  df-rel 4380  df-cnv 4381  df-co 4382  df-dm 4383  df-rn 4384  df-res 4385  df-ima 4386  df-iota 4895  df-fun 4932  df-fn 4933  df-f 4934  df-f1 4935  df-fo 4936  df-f1o 4937  df-fv 4938  df-en 6253  df-card 6418 This theorem is referenced by:  card0  6426
 Copyright terms: Public domain W3C validator