ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cauappcvgprlemlol GIF version

Theorem cauappcvgprlemlol 7455
Description: Lemma for cauappcvgpr 7470. The lower cut of the putative limit is lower. (Contributed by Jim Kingdon, 4-Aug-2020.)
Hypotheses
Ref Expression
cauappcvgpr.f (𝜑𝐹:QQ)
cauappcvgpr.app (𝜑 → ∀𝑝Q𝑞Q ((𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ (𝐹𝑞) <Q ((𝐹𝑝) +Q (𝑝 +Q 𝑞))))
cauappcvgpr.bnd (𝜑 → ∀𝑝Q 𝐴 <Q (𝐹𝑝))
cauappcvgpr.lim 𝐿 = ⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}, {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}⟩
Assertion
Ref Expression
cauappcvgprlemlol ((𝜑𝑠 <Q 𝑟𝑟 ∈ (1st𝐿)) → 𝑠 ∈ (1st𝐿))
Distinct variable groups:   𝐴,𝑝   𝐿,𝑝,𝑞   𝜑,𝑝,𝑞   𝐿,𝑟,𝑠   𝐴,𝑠,𝑝   𝐹,𝑙,𝑢,𝑝,𝑞,𝑟,𝑠   𝜑,𝑟,𝑠
Allowed substitution hints:   𝜑(𝑢,𝑙)   𝐴(𝑢,𝑟,𝑞,𝑙)   𝐿(𝑢,𝑙)

Proof of Theorem cauappcvgprlemlol
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltrelnq 7173 . . . . 5 <Q ⊆ (Q × Q)
21brel 4591 . . . 4 (𝑠 <Q 𝑟 → (𝑠Q𝑟Q))
32simpld 111 . . 3 (𝑠 <Q 𝑟𝑠Q)
433ad2ant2 1003 . 2 ((𝜑𝑠 <Q 𝑟𝑟 ∈ (1st𝐿)) → 𝑠Q)
5 oveq1 5781 . . . . . . . 8 (𝑙 = 𝑟 → (𝑙 +Q 𝑞) = (𝑟 +Q 𝑞))
65breq1d 3939 . . . . . . 7 (𝑙 = 𝑟 → ((𝑙 +Q 𝑞) <Q (𝐹𝑞) ↔ (𝑟 +Q 𝑞) <Q (𝐹𝑞)))
76rexbidv 2438 . . . . . 6 (𝑙 = 𝑟 → (∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞) ↔ ∃𝑞Q (𝑟 +Q 𝑞) <Q (𝐹𝑞)))
8 cauappcvgpr.lim . . . . . . . 8 𝐿 = ⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}, {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}⟩
98fveq2i 5424 . . . . . . 7 (1st𝐿) = (1st ‘⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}, {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}⟩)
10 nqex 7171 . . . . . . . . 9 Q ∈ V
1110rabex 4072 . . . . . . . 8 {𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)} ∈ V
1210rabex 4072 . . . . . . . 8 {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢} ∈ V
1311, 12op1st 6044 . . . . . . 7 (1st ‘⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}, {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}⟩) = {𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}
149, 13eqtri 2160 . . . . . 6 (1st𝐿) = {𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}
157, 14elrab2 2843 . . . . 5 (𝑟 ∈ (1st𝐿) ↔ (𝑟Q ∧ ∃𝑞Q (𝑟 +Q 𝑞) <Q (𝐹𝑞)))
1615simprbi 273 . . . 4 (𝑟 ∈ (1st𝐿) → ∃𝑞Q (𝑟 +Q 𝑞) <Q (𝐹𝑞))
17163ad2ant3 1004 . . 3 ((𝜑𝑠 <Q 𝑟𝑟 ∈ (1st𝐿)) → ∃𝑞Q (𝑟 +Q 𝑞) <Q (𝐹𝑞))
18 simpll2 1021 . . . . . . 7 ((((𝜑𝑠 <Q 𝑟𝑟 ∈ (1st𝐿)) ∧ 𝑞Q) ∧ (𝑟 +Q 𝑞) <Q (𝐹𝑞)) → 𝑠 <Q 𝑟)
19 ltanqg 7208 . . . . . . . . 9 ((𝑓Q𝑔QQ) → (𝑓 <Q 𝑔 ↔ ( +Q 𝑓) <Q ( +Q 𝑔)))
2019adantl 275 . . . . . . . 8 (((((𝜑𝑠 <Q 𝑟𝑟 ∈ (1st𝐿)) ∧ 𝑞Q) ∧ (𝑟 +Q 𝑞) <Q (𝐹𝑞)) ∧ (𝑓Q𝑔QQ)) → (𝑓 <Q 𝑔 ↔ ( +Q 𝑓) <Q ( +Q 𝑔)))
214ad2antrr 479 . . . . . . . 8 ((((𝜑𝑠 <Q 𝑟𝑟 ∈ (1st𝐿)) ∧ 𝑞Q) ∧ (𝑟 +Q 𝑞) <Q (𝐹𝑞)) → 𝑠Q)
222simprd 113 . . . . . . . . . 10 (𝑠 <Q 𝑟𝑟Q)
23223ad2ant2 1003 . . . . . . . . 9 ((𝜑𝑠 <Q 𝑟𝑟 ∈ (1st𝐿)) → 𝑟Q)
2423ad2antrr 479 . . . . . . . 8 ((((𝜑𝑠 <Q 𝑟𝑟 ∈ (1st𝐿)) ∧ 𝑞Q) ∧ (𝑟 +Q 𝑞) <Q (𝐹𝑞)) → 𝑟Q)
25 simplr 519 . . . . . . . 8 ((((𝜑𝑠 <Q 𝑟𝑟 ∈ (1st𝐿)) ∧ 𝑞Q) ∧ (𝑟 +Q 𝑞) <Q (𝐹𝑞)) → 𝑞Q)
26 addcomnqg 7189 . . . . . . . . 9 ((𝑓Q𝑔Q) → (𝑓 +Q 𝑔) = (𝑔 +Q 𝑓))
2726adantl 275 . . . . . . . 8 (((((𝜑𝑠 <Q 𝑟𝑟 ∈ (1st𝐿)) ∧ 𝑞Q) ∧ (𝑟 +Q 𝑞) <Q (𝐹𝑞)) ∧ (𝑓Q𝑔Q)) → (𝑓 +Q 𝑔) = (𝑔 +Q 𝑓))
2820, 21, 24, 25, 27caovord2d 5940 . . . . . . 7 ((((𝜑𝑠 <Q 𝑟𝑟 ∈ (1st𝐿)) ∧ 𝑞Q) ∧ (𝑟 +Q 𝑞) <Q (𝐹𝑞)) → (𝑠 <Q 𝑟 ↔ (𝑠 +Q 𝑞) <Q (𝑟 +Q 𝑞)))
2918, 28mpbid 146 . . . . . 6 ((((𝜑𝑠 <Q 𝑟𝑟 ∈ (1st𝐿)) ∧ 𝑞Q) ∧ (𝑟 +Q 𝑞) <Q (𝐹𝑞)) → (𝑠 +Q 𝑞) <Q (𝑟 +Q 𝑞))
30 ltsonq 7206 . . . . . . 7 <Q Or Q
3130, 1sotri 4934 . . . . . 6 (((𝑠 +Q 𝑞) <Q (𝑟 +Q 𝑞) ∧ (𝑟 +Q 𝑞) <Q (𝐹𝑞)) → (𝑠 +Q 𝑞) <Q (𝐹𝑞))
3229, 31sylancom 416 . . . . 5 ((((𝜑𝑠 <Q 𝑟𝑟 ∈ (1st𝐿)) ∧ 𝑞Q) ∧ (𝑟 +Q 𝑞) <Q (𝐹𝑞)) → (𝑠 +Q 𝑞) <Q (𝐹𝑞))
3332ex 114 . . . 4 (((𝜑𝑠 <Q 𝑟𝑟 ∈ (1st𝐿)) ∧ 𝑞Q) → ((𝑟 +Q 𝑞) <Q (𝐹𝑞) → (𝑠 +Q 𝑞) <Q (𝐹𝑞)))
3433reximdva 2534 . . 3 ((𝜑𝑠 <Q 𝑟𝑟 ∈ (1st𝐿)) → (∃𝑞Q (𝑟 +Q 𝑞) <Q (𝐹𝑞) → ∃𝑞Q (𝑠 +Q 𝑞) <Q (𝐹𝑞)))
3517, 34mpd 13 . 2 ((𝜑𝑠 <Q 𝑟𝑟 ∈ (1st𝐿)) → ∃𝑞Q (𝑠 +Q 𝑞) <Q (𝐹𝑞))
36 oveq1 5781 . . . . 5 (𝑙 = 𝑠 → (𝑙 +Q 𝑞) = (𝑠 +Q 𝑞))
3736breq1d 3939 . . . 4 (𝑙 = 𝑠 → ((𝑙 +Q 𝑞) <Q (𝐹𝑞) ↔ (𝑠 +Q 𝑞) <Q (𝐹𝑞)))
3837rexbidv 2438 . . 3 (𝑙 = 𝑠 → (∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞) ↔ ∃𝑞Q (𝑠 +Q 𝑞) <Q (𝐹𝑞)))
3938, 14elrab2 2843 . 2 (𝑠 ∈ (1st𝐿) ↔ (𝑠Q ∧ ∃𝑞Q (𝑠 +Q 𝑞) <Q (𝐹𝑞)))
404, 35, 39sylanbrc 413 1 ((𝜑𝑠 <Q 𝑟𝑟 ∈ (1st𝐿)) → 𝑠 ∈ (1st𝐿))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 962   = wceq 1331  wcel 1480  wral 2416  wrex 2417  {crab 2420  cop 3530   class class class wbr 3929  wf 5119  cfv 5123  (class class class)co 5774  1st c1st 6036  Qcnq 7088   +Q cplq 7090   <Q cltq 7093
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-eprel 4211  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-irdg 6267  df-oadd 6317  df-omul 6318  df-er 6429  df-ec 6431  df-qs 6435  df-ni 7112  df-pli 7113  df-mi 7114  df-lti 7115  df-plpq 7152  df-enq 7155  df-nqqs 7156  df-plqqs 7157  df-ltnqqs 7161
This theorem is referenced by:  cauappcvgprlemrnd  7458
  Copyright terms: Public domain W3C validator