ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cauappcvgprlemopu GIF version

Theorem cauappcvgprlemopu 6803
Description: Lemma for cauappcvgpr 6817. The upper cut of the putative limit is open. (Contributed by Jim Kingdon, 4-Aug-2020.)
Hypotheses
Ref Expression
cauappcvgpr.f (𝜑𝐹:QQ)
cauappcvgpr.app (𝜑 → ∀𝑝Q𝑞Q ((𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ (𝐹𝑞) <Q ((𝐹𝑝) +Q (𝑝 +Q 𝑞))))
cauappcvgpr.bnd (𝜑 → ∀𝑝Q 𝐴 <Q (𝐹𝑝))
cauappcvgpr.lim 𝐿 = ⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}, {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}⟩
Assertion
Ref Expression
cauappcvgprlemopu ((𝜑𝑟 ∈ (2nd𝐿)) → ∃𝑠Q (𝑠 <Q 𝑟𝑠 ∈ (2nd𝐿)))
Distinct variable groups:   𝐴,𝑝   𝐿,𝑝,𝑞   𝜑,𝑝,𝑞   𝐿,𝑟,𝑠   𝐴,𝑠,𝑝   𝐹,𝑙,𝑢,𝑝,𝑞,𝑟,𝑠   𝜑,𝑟,𝑠
Allowed substitution hints:   𝜑(𝑢,𝑙)   𝐴(𝑢,𝑟,𝑞,𝑙)   𝐿(𝑢,𝑙)

Proof of Theorem cauappcvgprlemopu
StepHypRef Expression
1 breq2 3795 . . . . . 6 (𝑢 = 𝑟 → (((𝐹𝑞) +Q 𝑞) <Q 𝑢 ↔ ((𝐹𝑞) +Q 𝑞) <Q 𝑟))
21rexbidv 2344 . . . . 5 (𝑢 = 𝑟 → (∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢 ↔ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑟))
3 cauappcvgpr.lim . . . . . . 7 𝐿 = ⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}, {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}⟩
43fveq2i 5208 . . . . . 6 (2nd𝐿) = (2nd ‘⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}, {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}⟩)
5 nqex 6518 . . . . . . . 8 Q ∈ V
65rabex 3928 . . . . . . 7 {𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)} ∈ V
75rabex 3928 . . . . . . 7 {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢} ∈ V
86, 7op2nd 5801 . . . . . 6 (2nd ‘⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}, {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}⟩) = {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}
94, 8eqtri 2076 . . . . 5 (2nd𝐿) = {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}
102, 9elrab2 2722 . . . 4 (𝑟 ∈ (2nd𝐿) ↔ (𝑟Q ∧ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑟))
1110simprbi 264 . . 3 (𝑟 ∈ (2nd𝐿) → ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑟)
1211adantl 266 . 2 ((𝜑𝑟 ∈ (2nd𝐿)) → ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑟)
13 simprr 492 . . . 4 (((𝜑𝑟 ∈ (2nd𝐿)) ∧ (𝑞Q ∧ ((𝐹𝑞) +Q 𝑞) <Q 𝑟)) → ((𝐹𝑞) +Q 𝑞) <Q 𝑟)
14 ltbtwnnqq 6570 . . . 4 (((𝐹𝑞) +Q 𝑞) <Q 𝑟 ↔ ∃𝑠Q (((𝐹𝑞) +Q 𝑞) <Q 𝑠𝑠 <Q 𝑟))
1513, 14sylib 131 . . 3 (((𝜑𝑟 ∈ (2nd𝐿)) ∧ (𝑞Q ∧ ((𝐹𝑞) +Q 𝑞) <Q 𝑟)) → ∃𝑠Q (((𝐹𝑞) +Q 𝑞) <Q 𝑠𝑠 <Q 𝑟))
16 simprr 492 . . . . . 6 (((((𝜑𝑟 ∈ (2nd𝐿)) ∧ (𝑞Q ∧ ((𝐹𝑞) +Q 𝑞) <Q 𝑟)) ∧ 𝑠Q) ∧ (((𝐹𝑞) +Q 𝑞) <Q 𝑠𝑠 <Q 𝑟)) → 𝑠 <Q 𝑟)
17 simplr 490 . . . . . . 7 (((((𝜑𝑟 ∈ (2nd𝐿)) ∧ (𝑞Q ∧ ((𝐹𝑞) +Q 𝑞) <Q 𝑟)) ∧ 𝑠Q) ∧ (((𝐹𝑞) +Q 𝑞) <Q 𝑠𝑠 <Q 𝑟)) → 𝑠Q)
18 simplrl 495 . . . . . . . . 9 ((((𝜑𝑟 ∈ (2nd𝐿)) ∧ (𝑞Q ∧ ((𝐹𝑞) +Q 𝑞) <Q 𝑟)) ∧ 𝑠Q) → 𝑞Q)
1918adantr 265 . . . . . . . 8 (((((𝜑𝑟 ∈ (2nd𝐿)) ∧ (𝑞Q ∧ ((𝐹𝑞) +Q 𝑞) <Q 𝑟)) ∧ 𝑠Q) ∧ (((𝐹𝑞) +Q 𝑞) <Q 𝑠𝑠 <Q 𝑟)) → 𝑞Q)
20 simprl 491 . . . . . . . 8 (((((𝜑𝑟 ∈ (2nd𝐿)) ∧ (𝑞Q ∧ ((𝐹𝑞) +Q 𝑞) <Q 𝑟)) ∧ 𝑠Q) ∧ (((𝐹𝑞) +Q 𝑞) <Q 𝑠𝑠 <Q 𝑟)) → ((𝐹𝑞) +Q 𝑞) <Q 𝑠)
21 rspe 2387 . . . . . . . 8 ((𝑞Q ∧ ((𝐹𝑞) +Q 𝑞) <Q 𝑠) → ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑠)
2219, 20, 21syl2anc 397 . . . . . . 7 (((((𝜑𝑟 ∈ (2nd𝐿)) ∧ (𝑞Q ∧ ((𝐹𝑞) +Q 𝑞) <Q 𝑟)) ∧ 𝑠Q) ∧ (((𝐹𝑞) +Q 𝑞) <Q 𝑠𝑠 <Q 𝑟)) → ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑠)
23 breq2 3795 . . . . . . . . 9 (𝑢 = 𝑠 → (((𝐹𝑞) +Q 𝑞) <Q 𝑢 ↔ ((𝐹𝑞) +Q 𝑞) <Q 𝑠))
2423rexbidv 2344 . . . . . . . 8 (𝑢 = 𝑠 → (∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢 ↔ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑠))
2524, 9elrab2 2722 . . . . . . 7 (𝑠 ∈ (2nd𝐿) ↔ (𝑠Q ∧ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑠))
2617, 22, 25sylanbrc 402 . . . . . 6 (((((𝜑𝑟 ∈ (2nd𝐿)) ∧ (𝑞Q ∧ ((𝐹𝑞) +Q 𝑞) <Q 𝑟)) ∧ 𝑠Q) ∧ (((𝐹𝑞) +Q 𝑞) <Q 𝑠𝑠 <Q 𝑟)) → 𝑠 ∈ (2nd𝐿))
2716, 26jca 294 . . . . 5 (((((𝜑𝑟 ∈ (2nd𝐿)) ∧ (𝑞Q ∧ ((𝐹𝑞) +Q 𝑞) <Q 𝑟)) ∧ 𝑠Q) ∧ (((𝐹𝑞) +Q 𝑞) <Q 𝑠𝑠 <Q 𝑟)) → (𝑠 <Q 𝑟𝑠 ∈ (2nd𝐿)))
2827ex 112 . . . 4 ((((𝜑𝑟 ∈ (2nd𝐿)) ∧ (𝑞Q ∧ ((𝐹𝑞) +Q 𝑞) <Q 𝑟)) ∧ 𝑠Q) → ((((𝐹𝑞) +Q 𝑞) <Q 𝑠𝑠 <Q 𝑟) → (𝑠 <Q 𝑟𝑠 ∈ (2nd𝐿))))
2928reximdva 2438 . . 3 (((𝜑𝑟 ∈ (2nd𝐿)) ∧ (𝑞Q ∧ ((𝐹𝑞) +Q 𝑞) <Q 𝑟)) → (∃𝑠Q (((𝐹𝑞) +Q 𝑞) <Q 𝑠𝑠 <Q 𝑟) → ∃𝑠Q (𝑠 <Q 𝑟𝑠 ∈ (2nd𝐿))))
3015, 29mpd 13 . 2 (((𝜑𝑟 ∈ (2nd𝐿)) ∧ (𝑞Q ∧ ((𝐹𝑞) +Q 𝑞) <Q 𝑟)) → ∃𝑠Q (𝑠 <Q 𝑟𝑠 ∈ (2nd𝐿)))
3112, 30rexlimddv 2454 1 ((𝜑𝑟 ∈ (2nd𝐿)) → ∃𝑠Q (𝑠 <Q 𝑟𝑠 ∈ (2nd𝐿)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 101   = wceq 1259  wcel 1409  wral 2323  wrex 2324  {crab 2327  cop 3405   class class class wbr 3791  wf 4925  cfv 4929  (class class class)co 5539  2nd c2nd 5793  Qcnq 6435   +Q cplq 6437   <Q cltq 6440
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-13 1420  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-coll 3899  ax-sep 3902  ax-nul 3910  ax-pow 3954  ax-pr 3971  ax-un 4197  ax-setind 4289  ax-iinf 4338
This theorem depends on definitions:  df-bi 114  df-dc 754  df-3or 897  df-3an 898  df-tru 1262  df-fal 1265  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ne 2221  df-ral 2328  df-rex 2329  df-reu 2330  df-rab 2332  df-v 2576  df-sbc 2787  df-csb 2880  df-dif 2947  df-un 2949  df-in 2951  df-ss 2958  df-nul 3252  df-pw 3388  df-sn 3408  df-pr 3409  df-op 3411  df-uni 3608  df-int 3643  df-iun 3686  df-br 3792  df-opab 3846  df-mpt 3847  df-tr 3882  df-eprel 4053  df-id 4057  df-po 4060  df-iso 4061  df-iord 4130  df-on 4132  df-suc 4135  df-iom 4341  df-xp 4378  df-rel 4379  df-cnv 4380  df-co 4381  df-dm 4382  df-rn 4383  df-res 4384  df-ima 4385  df-iota 4894  df-fun 4931  df-fn 4932  df-f 4933  df-f1 4934  df-fo 4935  df-f1o 4936  df-fv 4937  df-ov 5542  df-oprab 5543  df-mpt2 5544  df-1st 5794  df-2nd 5795  df-recs 5950  df-irdg 5987  df-1o 6031  df-oadd 6035  df-omul 6036  df-er 6136  df-ec 6138  df-qs 6142  df-ni 6459  df-pli 6460  df-mi 6461  df-lti 6462  df-plpq 6499  df-mpq 6500  df-enq 6502  df-nqqs 6503  df-plqqs 6504  df-mqqs 6505  df-1nqqs 6506  df-rq 6507  df-ltnqqs 6508
This theorem is referenced by:  cauappcvgprlemrnd  6805
  Copyright terms: Public domain W3C validator