ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cauappcvgprlemopu GIF version

Theorem cauappcvgprlemopu 7449
Description: Lemma for cauappcvgpr 7463. The upper cut of the putative limit is open. (Contributed by Jim Kingdon, 4-Aug-2020.)
Hypotheses
Ref Expression
cauappcvgpr.f (𝜑𝐹:QQ)
cauappcvgpr.app (𝜑 → ∀𝑝Q𝑞Q ((𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ (𝐹𝑞) <Q ((𝐹𝑝) +Q (𝑝 +Q 𝑞))))
cauappcvgpr.bnd (𝜑 → ∀𝑝Q 𝐴 <Q (𝐹𝑝))
cauappcvgpr.lim 𝐿 = ⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}, {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}⟩
Assertion
Ref Expression
cauappcvgprlemopu ((𝜑𝑟 ∈ (2nd𝐿)) → ∃𝑠Q (𝑠 <Q 𝑟𝑠 ∈ (2nd𝐿)))
Distinct variable groups:   𝐴,𝑝   𝐿,𝑝,𝑞   𝜑,𝑝,𝑞   𝐿,𝑟,𝑠   𝐴,𝑠,𝑝   𝐹,𝑙,𝑢,𝑝,𝑞,𝑟,𝑠   𝜑,𝑟,𝑠
Allowed substitution hints:   𝜑(𝑢,𝑙)   𝐴(𝑢,𝑟,𝑞,𝑙)   𝐿(𝑢,𝑙)

Proof of Theorem cauappcvgprlemopu
StepHypRef Expression
1 breq2 3928 . . . . . 6 (𝑢 = 𝑟 → (((𝐹𝑞) +Q 𝑞) <Q 𝑢 ↔ ((𝐹𝑞) +Q 𝑞) <Q 𝑟))
21rexbidv 2436 . . . . 5 (𝑢 = 𝑟 → (∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢 ↔ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑟))
3 cauappcvgpr.lim . . . . . . 7 𝐿 = ⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}, {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}⟩
43fveq2i 5417 . . . . . 6 (2nd𝐿) = (2nd ‘⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}, {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}⟩)
5 nqex 7164 . . . . . . . 8 Q ∈ V
65rabex 4067 . . . . . . 7 {𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)} ∈ V
75rabex 4067 . . . . . . 7 {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢} ∈ V
86, 7op2nd 6038 . . . . . 6 (2nd ‘⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}, {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}⟩) = {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}
94, 8eqtri 2158 . . . . 5 (2nd𝐿) = {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}
102, 9elrab2 2838 . . . 4 (𝑟 ∈ (2nd𝐿) ↔ (𝑟Q ∧ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑟))
1110simprbi 273 . . 3 (𝑟 ∈ (2nd𝐿) → ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑟)
1211adantl 275 . 2 ((𝜑𝑟 ∈ (2nd𝐿)) → ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑟)
13 simprr 521 . . . 4 (((𝜑𝑟 ∈ (2nd𝐿)) ∧ (𝑞Q ∧ ((𝐹𝑞) +Q 𝑞) <Q 𝑟)) → ((𝐹𝑞) +Q 𝑞) <Q 𝑟)
14 ltbtwnnqq 7216 . . . 4 (((𝐹𝑞) +Q 𝑞) <Q 𝑟 ↔ ∃𝑠Q (((𝐹𝑞) +Q 𝑞) <Q 𝑠𝑠 <Q 𝑟))
1513, 14sylib 121 . . 3 (((𝜑𝑟 ∈ (2nd𝐿)) ∧ (𝑞Q ∧ ((𝐹𝑞) +Q 𝑞) <Q 𝑟)) → ∃𝑠Q (((𝐹𝑞) +Q 𝑞) <Q 𝑠𝑠 <Q 𝑟))
16 simprr 521 . . . . . 6 (((((𝜑𝑟 ∈ (2nd𝐿)) ∧ (𝑞Q ∧ ((𝐹𝑞) +Q 𝑞) <Q 𝑟)) ∧ 𝑠Q) ∧ (((𝐹𝑞) +Q 𝑞) <Q 𝑠𝑠 <Q 𝑟)) → 𝑠 <Q 𝑟)
17 simplr 519 . . . . . . 7 (((((𝜑𝑟 ∈ (2nd𝐿)) ∧ (𝑞Q ∧ ((𝐹𝑞) +Q 𝑞) <Q 𝑟)) ∧ 𝑠Q) ∧ (((𝐹𝑞) +Q 𝑞) <Q 𝑠𝑠 <Q 𝑟)) → 𝑠Q)
18 simplrl 524 . . . . . . . . 9 ((((𝜑𝑟 ∈ (2nd𝐿)) ∧ (𝑞Q ∧ ((𝐹𝑞) +Q 𝑞) <Q 𝑟)) ∧ 𝑠Q) → 𝑞Q)
1918adantr 274 . . . . . . . 8 (((((𝜑𝑟 ∈ (2nd𝐿)) ∧ (𝑞Q ∧ ((𝐹𝑞) +Q 𝑞) <Q 𝑟)) ∧ 𝑠Q) ∧ (((𝐹𝑞) +Q 𝑞) <Q 𝑠𝑠 <Q 𝑟)) → 𝑞Q)
20 simprl 520 . . . . . . . 8 (((((𝜑𝑟 ∈ (2nd𝐿)) ∧ (𝑞Q ∧ ((𝐹𝑞) +Q 𝑞) <Q 𝑟)) ∧ 𝑠Q) ∧ (((𝐹𝑞) +Q 𝑞) <Q 𝑠𝑠 <Q 𝑟)) → ((𝐹𝑞) +Q 𝑞) <Q 𝑠)
21 rspe 2479 . . . . . . . 8 ((𝑞Q ∧ ((𝐹𝑞) +Q 𝑞) <Q 𝑠) → ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑠)
2219, 20, 21syl2anc 408 . . . . . . 7 (((((𝜑𝑟 ∈ (2nd𝐿)) ∧ (𝑞Q ∧ ((𝐹𝑞) +Q 𝑞) <Q 𝑟)) ∧ 𝑠Q) ∧ (((𝐹𝑞) +Q 𝑞) <Q 𝑠𝑠 <Q 𝑟)) → ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑠)
23 breq2 3928 . . . . . . . . 9 (𝑢 = 𝑠 → (((𝐹𝑞) +Q 𝑞) <Q 𝑢 ↔ ((𝐹𝑞) +Q 𝑞) <Q 𝑠))
2423rexbidv 2436 . . . . . . . 8 (𝑢 = 𝑠 → (∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢 ↔ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑠))
2524, 9elrab2 2838 . . . . . . 7 (𝑠 ∈ (2nd𝐿) ↔ (𝑠Q ∧ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑠))
2617, 22, 25sylanbrc 413 . . . . . 6 (((((𝜑𝑟 ∈ (2nd𝐿)) ∧ (𝑞Q ∧ ((𝐹𝑞) +Q 𝑞) <Q 𝑟)) ∧ 𝑠Q) ∧ (((𝐹𝑞) +Q 𝑞) <Q 𝑠𝑠 <Q 𝑟)) → 𝑠 ∈ (2nd𝐿))
2716, 26jca 304 . . . . 5 (((((𝜑𝑟 ∈ (2nd𝐿)) ∧ (𝑞Q ∧ ((𝐹𝑞) +Q 𝑞) <Q 𝑟)) ∧ 𝑠Q) ∧ (((𝐹𝑞) +Q 𝑞) <Q 𝑠𝑠 <Q 𝑟)) → (𝑠 <Q 𝑟𝑠 ∈ (2nd𝐿)))
2827ex 114 . . . 4 ((((𝜑𝑟 ∈ (2nd𝐿)) ∧ (𝑞Q ∧ ((𝐹𝑞) +Q 𝑞) <Q 𝑟)) ∧ 𝑠Q) → ((((𝐹𝑞) +Q 𝑞) <Q 𝑠𝑠 <Q 𝑟) → (𝑠 <Q 𝑟𝑠 ∈ (2nd𝐿))))
2928reximdva 2532 . . 3 (((𝜑𝑟 ∈ (2nd𝐿)) ∧ (𝑞Q ∧ ((𝐹𝑞) +Q 𝑞) <Q 𝑟)) → (∃𝑠Q (((𝐹𝑞) +Q 𝑞) <Q 𝑠𝑠 <Q 𝑟) → ∃𝑠Q (𝑠 <Q 𝑟𝑠 ∈ (2nd𝐿))))
3015, 29mpd 13 . 2 (((𝜑𝑟 ∈ (2nd𝐿)) ∧ (𝑞Q ∧ ((𝐹𝑞) +Q 𝑞) <Q 𝑟)) → ∃𝑠Q (𝑠 <Q 𝑟𝑠 ∈ (2nd𝐿)))
3112, 30rexlimddv 2552 1 ((𝜑𝑟 ∈ (2nd𝐿)) → ∃𝑠Q (𝑠 <Q 𝑟𝑠 ∈ (2nd𝐿)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1331  wcel 1480  wral 2414  wrex 2415  {crab 2418  cop 3525   class class class wbr 3924  wf 5114  cfv 5118  (class class class)co 5767  2nd c2nd 6030  Qcnq 7081   +Q cplq 7083   <Q cltq 7086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-coll 4038  ax-sep 4041  ax-nul 4049  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-iinf 4497
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-ral 2419  df-rex 2420  df-reu 2421  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-tr 4022  df-eprel 4206  df-id 4210  df-po 4213  df-iso 4214  df-iord 4283  df-on 4285  df-suc 4288  df-iom 4500  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-fv 5126  df-ov 5770  df-oprab 5771  df-mpo 5772  df-1st 6031  df-2nd 6032  df-recs 6195  df-irdg 6260  df-1o 6306  df-oadd 6310  df-omul 6311  df-er 6422  df-ec 6424  df-qs 6428  df-ni 7105  df-pli 7106  df-mi 7107  df-lti 7108  df-plpq 7145  df-mpq 7146  df-enq 7148  df-nqqs 7149  df-plqqs 7150  df-mqqs 7151  df-1nqqs 7152  df-rq 7153  df-ltnqqs 7154
This theorem is referenced by:  cauappcvgprlemrnd  7451
  Copyright terms: Public domain W3C validator