ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgprlemloc GIF version

Theorem caucvgprlemloc 6830
Description: Lemma for caucvgpr 6837. The putative limit is located. (Contributed by Jim Kingdon, 27-Sep-2020.)
Hypotheses
Ref Expression
caucvgpr.f (𝜑𝐹:NQ)
caucvgpr.cau (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )) ∧ (𝐹𝑘) <Q ((𝐹𝑛) +Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )))))
caucvgpr.bnd (𝜑 → ∀𝑗N 𝐴 <Q (𝐹𝑗))
caucvgpr.lim 𝐿 = ⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q 𝑢}⟩
Assertion
Ref Expression
caucvgprlemloc (𝜑 → ∀𝑠Q𝑟Q (𝑠 <Q 𝑟 → (𝑠 ∈ (1st𝐿) ∨ 𝑟 ∈ (2nd𝐿))))
Distinct variable groups:   𝐴,𝑗   𝑗,𝐹,𝑙   𝑢,𝐹   𝜑,𝑗,𝑟,𝑠   𝑠,𝑙   𝑢,𝑗,𝑟
Allowed substitution hints:   𝜑(𝑢,𝑘,𝑛,𝑙)   𝐴(𝑢,𝑘,𝑛,𝑠,𝑟,𝑙)   𝐹(𝑘,𝑛,𝑠,𝑟)   𝐿(𝑢,𝑗,𝑘,𝑛,𝑠,𝑟,𝑙)

Proof of Theorem caucvgprlemloc
Dummy variables 𝑓 𝑔 𝑚 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltexnqi 6564 . . . . 5 (𝑠 <Q 𝑟 → ∃𝑦Q (𝑠 +Q 𝑦) = 𝑟)
21adantl 266 . . . 4 (((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) → ∃𝑦Q (𝑠 +Q 𝑦) = 𝑟)
3 subhalfnqq 6569 . . . . . 6 (𝑦Q → ∃𝑥Q (𝑥 +Q 𝑥) <Q 𝑦)
43ad2antrl 467 . . . . 5 ((((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑟)) → ∃𝑥Q (𝑥 +Q 𝑥) <Q 𝑦)
5 archrecnq 6818 . . . . . . 7 (𝑥Q → ∃𝑚N (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) <Q 𝑥)
65ad2antrl 467 . . . . . 6 (((((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑟)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) → ∃𝑚N (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) <Q 𝑥)
7 simprr 492 . . . . . . . . . . . 12 ((((((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑟)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑚N ∧ (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) <Q 𝑥)) → (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) <Q 𝑥)
8 nnnq 6577 . . . . . . . . . . . . . . 15 (𝑚N → [⟨𝑚, 1𝑜⟩] ~QQ)
9 recclnq 6547 . . . . . . . . . . . . . . 15 ([⟨𝑚, 1𝑜⟩] ~QQ → (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) ∈ Q)
108, 9syl 14 . . . . . . . . . . . . . 14 (𝑚N → (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) ∈ Q)
1110ad2antrl 467 . . . . . . . . . . . . 13 ((((((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑟)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑚N ∧ (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) <Q 𝑥)) → (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) ∈ Q)
12 simplrl 495 . . . . . . . . . . . . 13 ((((((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑟)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑚N ∧ (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) <Q 𝑥)) → 𝑥Q)
13 lt2addnq 6559 . . . . . . . . . . . . 13 ((((*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) ∈ Q𝑥Q) ∧ ((*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) ∈ Q𝑥Q)) → (((*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) <Q 𝑥 ∧ (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) <Q 𝑥) → ((*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q )) <Q (𝑥 +Q 𝑥)))
1411, 12, 11, 12, 13syl22anc 1147 . . . . . . . . . . . 12 ((((((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑟)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑚N ∧ (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) <Q 𝑥)) → (((*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) <Q 𝑥 ∧ (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) <Q 𝑥) → ((*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q )) <Q (𝑥 +Q 𝑥)))
157, 7, 14mp2and 417 . . . . . . . . . . 11 ((((((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑟)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑚N ∧ (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) <Q 𝑥)) → ((*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q )) <Q (𝑥 +Q 𝑥))
16 simplrr 496 . . . . . . . . . . 11 ((((((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑟)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑚N ∧ (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) <Q 𝑥)) → (𝑥 +Q 𝑥) <Q 𝑦)
17 ltsonq 6553 . . . . . . . . . . . 12 <Q Or Q
18 ltrelnq 6520 . . . . . . . . . . . 12 <Q ⊆ (Q × Q)
1917, 18sotri 4747 . . . . . . . . . . 11 ((((*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q )) <Q (𝑥 +Q 𝑥) ∧ (𝑥 +Q 𝑥) <Q 𝑦) → ((*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q )) <Q 𝑦)
2015, 16, 19syl2anc 397 . . . . . . . . . 10 ((((((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑟)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑚N ∧ (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) <Q 𝑥)) → ((*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q )) <Q 𝑦)
21 simplrl 495 . . . . . . . . . . 11 (((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) → 𝑠Q)
2221ad3antrrr 469 . . . . . . . . . 10 ((((((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑟)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑚N ∧ (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) <Q 𝑥)) → 𝑠Q)
23 ltanqi 6557 . . . . . . . . . 10 ((((*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q )) <Q 𝑦𝑠Q) → (𝑠 +Q ((*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ))) <Q (𝑠 +Q 𝑦))
2420, 22, 23syl2anc 397 . . . . . . . . 9 ((((((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑟)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑚N ∧ (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) <Q 𝑥)) → (𝑠 +Q ((*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ))) <Q (𝑠 +Q 𝑦))
25 simprr 492 . . . . . . . . . 10 ((((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑟)) → (𝑠 +Q 𝑦) = 𝑟)
2625ad2antrr 465 . . . . . . . . 9 ((((((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑟)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑚N ∧ (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) <Q 𝑥)) → (𝑠 +Q 𝑦) = 𝑟)
2724, 26breqtrd 3815 . . . . . . . 8 ((((((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑟)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑚N ∧ (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) <Q 𝑥)) → (𝑠 +Q ((*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ))) <Q 𝑟)
28 addclnq 6530 . . . . . . . . . . 11 (((*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) ∈ Q ∧ (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) ∈ Q) → ((*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q )) ∈ Q)
2911, 11, 28syl2anc 397 . . . . . . . . . 10 ((((((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑟)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑚N ∧ (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) <Q 𝑥)) → ((*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q )) ∈ Q)
30 addclnq 6530 . . . . . . . . . 10 ((𝑠Q ∧ ((*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q )) ∈ Q) → (𝑠 +Q ((*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ))) ∈ Q)
3122, 29, 30syl2anc 397 . . . . . . . . 9 ((((((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑟)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑚N ∧ (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) <Q 𝑥)) → (𝑠 +Q ((*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ))) ∈ Q)
32 simplrr 496 . . . . . . . . . 10 (((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) → 𝑟Q)
3332ad3antrrr 469 . . . . . . . . 9 ((((((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑟)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑚N ∧ (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) <Q 𝑥)) → 𝑟Q)
34 caucvgpr.f . . . . . . . . . . . 12 (𝜑𝐹:NQ)
3534ad5antr 473 . . . . . . . . . . 11 ((((((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑟)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑚N ∧ (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) <Q 𝑥)) → 𝐹:NQ)
36 simprl 491 . . . . . . . . . . 11 ((((((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑟)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑚N ∧ (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) <Q 𝑥)) → 𝑚N)
3735, 36ffvelrnd 5330 . . . . . . . . . 10 ((((((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑟)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑚N ∧ (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) <Q 𝑥)) → (𝐹𝑚) ∈ Q)
38 addclnq 6530 . . . . . . . . . 10 (((𝐹𝑚) ∈ Q ∧ (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) ∈ Q) → ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q )) ∈ Q)
3937, 11, 38syl2anc 397 . . . . . . . . 9 ((((((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑟)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑚N ∧ (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) <Q 𝑥)) → ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q )) ∈ Q)
40 sowlin 4084 . . . . . . . . . 10 (( <Q Or Q ∧ ((𝑠 +Q ((*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ))) ∈ Q𝑟Q ∧ ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q )) ∈ Q)) → ((𝑠 +Q ((*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ))) <Q 𝑟 → ((𝑠 +Q ((*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ))) <Q ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q )) ∨ ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q )) <Q 𝑟)))
4117, 40mpan 408 . . . . . . . . 9 (((𝑠 +Q ((*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ))) ∈ Q𝑟Q ∧ ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q )) ∈ Q) → ((𝑠 +Q ((*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ))) <Q 𝑟 → ((𝑠 +Q ((*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ))) <Q ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q )) ∨ ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q )) <Q 𝑟)))
4231, 33, 39, 41syl3anc 1146 . . . . . . . 8 ((((((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑟)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑚N ∧ (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) <Q 𝑥)) → ((𝑠 +Q ((*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ))) <Q 𝑟 → ((𝑠 +Q ((*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ))) <Q ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q )) ∨ ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q )) <Q 𝑟)))
4327, 42mpd 13 . . . . . . 7 ((((((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑟)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑚N ∧ (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) <Q 𝑥)) → ((𝑠 +Q ((*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ))) <Q ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q )) ∨ ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q )) <Q 𝑟))
4422adantr 265 . . . . . . . . . 10 (((((((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑟)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑚N ∧ (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) <Q 𝑥)) ∧ (𝑠 +Q ((*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ))) <Q ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ))) → 𝑠Q)
45 simplrl 495 . . . . . . . . . . 11 (((((((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑟)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑚N ∧ (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) <Q 𝑥)) ∧ (𝑠 +Q ((*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ))) <Q ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ))) → 𝑚N)
46 simpr 107 . . . . . . . . . . . . 13 (((((((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑟)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑚N ∧ (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) <Q 𝑥)) ∧ (𝑠 +Q ((*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ))) <Q ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ))) → (𝑠 +Q ((*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ))) <Q ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q )))
4711adantr 265 . . . . . . . . . . . . . . 15 (((((((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑟)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑚N ∧ (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) <Q 𝑥)) ∧ (𝑠 +Q ((*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ))) <Q ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ))) → (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) ∈ Q)
48 addassnqg 6537 . . . . . . . . . . . . . . 15 ((𝑠Q ∧ (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) ∈ Q ∧ (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) ∈ Q) → ((𝑠 +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q )) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q )) = (𝑠 +Q ((*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ))))
4944, 47, 47, 48syl3anc 1146 . . . . . . . . . . . . . 14 (((((((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑟)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑚N ∧ (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) <Q 𝑥)) ∧ (𝑠 +Q ((*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ))) <Q ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ))) → ((𝑠 +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q )) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q )) = (𝑠 +Q ((*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ))))
5049breq1d 3801 . . . . . . . . . . . . 13 (((((((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑟)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑚N ∧ (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) <Q 𝑥)) ∧ (𝑠 +Q ((*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ))) <Q ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ))) → (((𝑠 +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q )) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q )) <Q ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q )) ↔ (𝑠 +Q ((*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ))) <Q ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ))))
5146, 50mpbird 160 . . . . . . . . . . . 12 (((((((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑟)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑚N ∧ (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) <Q 𝑥)) ∧ (𝑠 +Q ((*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ))) <Q ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ))) → ((𝑠 +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q )) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q )) <Q ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q )))
52 ltanqg 6555 . . . . . . . . . . . . . 14 ((𝑓Q𝑔QQ) → (𝑓 <Q 𝑔 ↔ ( +Q 𝑓) <Q ( +Q 𝑔)))
5352adantl 266 . . . . . . . . . . . . 13 ((((((((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑟)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑚N ∧ (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) <Q 𝑥)) ∧ (𝑠 +Q ((*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ))) <Q ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ))) ∧ (𝑓Q𝑔QQ)) → (𝑓 <Q 𝑔 ↔ ( +Q 𝑓) <Q ( +Q 𝑔)))
54 addclnq 6530 . . . . . . . . . . . . . 14 ((𝑠Q ∧ (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) ∈ Q) → (𝑠 +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q )) ∈ Q)
5544, 47, 54syl2anc 397 . . . . . . . . . . . . 13 (((((((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑟)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑚N ∧ (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) <Q 𝑥)) ∧ (𝑠 +Q ((*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ))) <Q ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ))) → (𝑠 +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q )) ∈ Q)
5637adantr 265 . . . . . . . . . . . . 13 (((((((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑟)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑚N ∧ (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) <Q 𝑥)) ∧ (𝑠 +Q ((*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ))) <Q ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ))) → (𝐹𝑚) ∈ Q)
57 addcomnqg 6536 . . . . . . . . . . . . . 14 ((𝑓Q𝑔Q) → (𝑓 +Q 𝑔) = (𝑔 +Q 𝑓))
5857adantl 266 . . . . . . . . . . . . 13 ((((((((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑟)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑚N ∧ (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) <Q 𝑥)) ∧ (𝑠 +Q ((*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ))) <Q ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ))) ∧ (𝑓Q𝑔Q)) → (𝑓 +Q 𝑔) = (𝑔 +Q 𝑓))
5953, 55, 56, 47, 58caovord2d 5697 . . . . . . . . . . . 12 (((((((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑟)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑚N ∧ (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) <Q 𝑥)) ∧ (𝑠 +Q ((*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ))) <Q ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ))) → ((𝑠 +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q )) <Q (𝐹𝑚) ↔ ((𝑠 +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q )) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q )) <Q ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ))))
6051, 59mpbird 160 . . . . . . . . . . 11 (((((((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑟)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑚N ∧ (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) <Q 𝑥)) ∧ (𝑠 +Q ((*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ))) <Q ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ))) → (𝑠 +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q )) <Q (𝐹𝑚))
61 opeq1 3576 . . . . . . . . . . . . . . . 16 (𝑗 = 𝑚 → ⟨𝑗, 1𝑜⟩ = ⟨𝑚, 1𝑜⟩)
6261eceq1d 6172 . . . . . . . . . . . . . . 15 (𝑗 = 𝑚 → [⟨𝑗, 1𝑜⟩] ~Q = [⟨𝑚, 1𝑜⟩] ~Q )
6362fveq2d 5209 . . . . . . . . . . . . . 14 (𝑗 = 𝑚 → (*Q‘[⟨𝑗, 1𝑜⟩] ~Q ) = (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ))
6463oveq2d 5555 . . . . . . . . . . . . 13 (𝑗 = 𝑚 → (𝑠 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) = (𝑠 +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q )))
65 fveq2 5205 . . . . . . . . . . . . 13 (𝑗 = 𝑚 → (𝐹𝑗) = (𝐹𝑚))
6664, 65breq12d 3804 . . . . . . . . . . . 12 (𝑗 = 𝑚 → ((𝑠 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (𝐹𝑗) ↔ (𝑠 +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q )) <Q (𝐹𝑚)))
6766rspcev 2673 . . . . . . . . . . 11 ((𝑚N ∧ (𝑠 +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q )) <Q (𝐹𝑚)) → ∃𝑗N (𝑠 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (𝐹𝑗))
6845, 60, 67syl2anc 397 . . . . . . . . . 10 (((((((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑟)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑚N ∧ (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) <Q 𝑥)) ∧ (𝑠 +Q ((*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ))) <Q ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ))) → ∃𝑗N (𝑠 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (𝐹𝑗))
69 oveq1 5546 . . . . . . . . . . . . 13 (𝑙 = 𝑠 → (𝑙 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) = (𝑠 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )))
7069breq1d 3801 . . . . . . . . . . . 12 (𝑙 = 𝑠 → ((𝑙 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (𝐹𝑗) ↔ (𝑠 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (𝐹𝑗)))
7170rexbidv 2344 . . . . . . . . . . 11 (𝑙 = 𝑠 → (∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (𝐹𝑗) ↔ ∃𝑗N (𝑠 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (𝐹𝑗)))
72 caucvgpr.lim . . . . . . . . . . . . 13 𝐿 = ⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q 𝑢}⟩
7372fveq2i 5208 . . . . . . . . . . . 12 (1st𝐿) = (1st ‘⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q 𝑢}⟩)
74 nqex 6518 . . . . . . . . . . . . . 14 Q ∈ V
7574rabex 3928 . . . . . . . . . . . . 13 {𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (𝐹𝑗)} ∈ V
7674rabex 3928 . . . . . . . . . . . . 13 {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q 𝑢} ∈ V
7775, 76op1st 5800 . . . . . . . . . . . 12 (1st ‘⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q 𝑢}⟩) = {𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (𝐹𝑗)}
7873, 77eqtri 2076 . . . . . . . . . . 11 (1st𝐿) = {𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (𝐹𝑗)}
7971, 78elrab2 2722 . . . . . . . . . 10 (𝑠 ∈ (1st𝐿) ↔ (𝑠Q ∧ ∃𝑗N (𝑠 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (𝐹𝑗)))
8044, 68, 79sylanbrc 402 . . . . . . . . 9 (((((((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑟)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑚N ∧ (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) <Q 𝑥)) ∧ (𝑠 +Q ((*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ))) <Q ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ))) → 𝑠 ∈ (1st𝐿))
8180ex 112 . . . . . . . 8 ((((((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑟)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑚N ∧ (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) <Q 𝑥)) → ((𝑠 +Q ((*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ))) <Q ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q )) → 𝑠 ∈ (1st𝐿)))
8233adantr 265 . . . . . . . . . 10 (((((((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑟)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑚N ∧ (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) <Q 𝑥)) ∧ ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q )) <Q 𝑟) → 𝑟Q)
8365, 63oveq12d 5557 . . . . . . . . . . . . 13 (𝑗 = 𝑚 → ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) = ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q )))
8483breq1d 3801 . . . . . . . . . . . 12 (𝑗 = 𝑚 → (((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q 𝑟 ↔ ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q )) <Q 𝑟))
8584rspcev 2673 . . . . . . . . . . 11 ((𝑚N ∧ ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q )) <Q 𝑟) → ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q 𝑟)
8636, 85sylan 271 . . . . . . . . . 10 (((((((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑟)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑚N ∧ (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) <Q 𝑥)) ∧ ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q )) <Q 𝑟) → ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q 𝑟)
87 breq2 3795 . . . . . . . . . . . 12 (𝑢 = 𝑟 → (((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q 𝑢 ↔ ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q 𝑟))
8887rexbidv 2344 . . . . . . . . . . 11 (𝑢 = 𝑟 → (∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q 𝑢 ↔ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q 𝑟))
8972fveq2i 5208 . . . . . . . . . . . 12 (2nd𝐿) = (2nd ‘⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q 𝑢}⟩)
9075, 76op2nd 5801 . . . . . . . . . . . 12 (2nd ‘⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q 𝑢}⟩) = {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q 𝑢}
9189, 90eqtri 2076 . . . . . . . . . . 11 (2nd𝐿) = {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q 𝑢}
9288, 91elrab2 2722 . . . . . . . . . 10 (𝑟 ∈ (2nd𝐿) ↔ (𝑟Q ∧ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q 𝑟))
9382, 86, 92sylanbrc 402 . . . . . . . . 9 (((((((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑟)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑚N ∧ (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) <Q 𝑥)) ∧ ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q )) <Q 𝑟) → 𝑟 ∈ (2nd𝐿))
9493ex 112 . . . . . . . 8 ((((((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑟)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑚N ∧ (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) <Q 𝑥)) → (((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q )) <Q 𝑟𝑟 ∈ (2nd𝐿)))
9581, 94orim12d 710 . . . . . . 7 ((((((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑟)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑚N ∧ (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) <Q 𝑥)) → (((𝑠 +Q ((*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ))) <Q ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q )) ∨ ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q )) <Q 𝑟) → (𝑠 ∈ (1st𝐿) ∨ 𝑟 ∈ (2nd𝐿))))
9643, 95mpd 13 . . . . . 6 ((((((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑟)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑚N ∧ (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) <Q 𝑥)) → (𝑠 ∈ (1st𝐿) ∨ 𝑟 ∈ (2nd𝐿)))
976, 96rexlimddv 2454 . . . . 5 (((((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑟)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) → (𝑠 ∈ (1st𝐿) ∨ 𝑟 ∈ (2nd𝐿)))
984, 97rexlimddv 2454 . . . 4 ((((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑟)) → (𝑠 ∈ (1st𝐿) ∨ 𝑟 ∈ (2nd𝐿)))
992, 98rexlimddv 2454 . . 3 (((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) → (𝑠 ∈ (1st𝐿) ∨ 𝑟 ∈ (2nd𝐿)))
10099ex 112 . 2 ((𝜑 ∧ (𝑠Q𝑟Q)) → (𝑠 <Q 𝑟 → (𝑠 ∈ (1st𝐿) ∨ 𝑟 ∈ (2nd𝐿))))
101100ralrimivva 2418 1 (𝜑 → ∀𝑠Q𝑟Q (𝑠 <Q 𝑟 → (𝑠 ∈ (1st𝐿) ∨ 𝑟 ∈ (2nd𝐿))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 101  wb 102  wo 639  w3a 896   = wceq 1259  wcel 1409  wral 2323  wrex 2324  {crab 2327  cop 3405   class class class wbr 3791   Or wor 4059  wf 4925  cfv 4929  (class class class)co 5539  1st c1st 5792  2nd c2nd 5793  1𝑜c1o 6024  [cec 6134  Ncnpi 6427   <N clti 6430   ~Q ceq 6434  Qcnq 6435   +Q cplq 6437  *Qcrq 6439   <Q cltq 6440
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-13 1420  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-coll 3899  ax-sep 3902  ax-nul 3910  ax-pow 3954  ax-pr 3971  ax-un 4197  ax-setind 4289  ax-iinf 4338
This theorem depends on definitions:  df-bi 114  df-dc 754  df-3or 897  df-3an 898  df-tru 1262  df-fal 1265  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ne 2221  df-ral 2328  df-rex 2329  df-reu 2330  df-rab 2332  df-v 2576  df-sbc 2787  df-csb 2880  df-dif 2947  df-un 2949  df-in 2951  df-ss 2958  df-nul 3252  df-pw 3388  df-sn 3408  df-pr 3409  df-op 3411  df-uni 3608  df-int 3643  df-iun 3686  df-br 3792  df-opab 3846  df-mpt 3847  df-tr 3882  df-eprel 4053  df-id 4057  df-po 4060  df-iso 4061  df-iord 4130  df-on 4132  df-suc 4135  df-iom 4341  df-xp 4378  df-rel 4379  df-cnv 4380  df-co 4381  df-dm 4382  df-rn 4383  df-res 4384  df-ima 4385  df-iota 4894  df-fun 4931  df-fn 4932  df-f 4933  df-f1 4934  df-fo 4935  df-f1o 4936  df-fv 4937  df-ov 5542  df-oprab 5543  df-mpt2 5544  df-1st 5794  df-2nd 5795  df-recs 5950  df-irdg 5987  df-1o 6031  df-oadd 6035  df-omul 6036  df-er 6136  df-ec 6138  df-qs 6142  df-ni 6459  df-pli 6460  df-mi 6461  df-lti 6462  df-plpq 6499  df-mpq 6500  df-enq 6502  df-nqqs 6503  df-plqqs 6504  df-mqqs 6505  df-1nqqs 6506  df-rq 6507  df-ltnqqs 6508
This theorem is referenced by:  caucvgprlemcl  6831
  Copyright terms: Public domain W3C validator