ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgprprlemexb GIF version

Theorem caucvgprprlemexb 6959
Description: Lemma for caucvgprpr 6964. Part of showing the putative limit to be a limit. (Contributed by Jim Kingdon, 15-Jun-2021.)
Hypotheses
Ref Expression
caucvgprpr.f (𝜑𝐹:NP)
caucvgprpr.cau (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛)<P ((𝐹𝑘) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩) ∧ (𝐹𝑘)<P ((𝐹𝑛) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩))))
caucvgprpr.bnd (𝜑 → ∀𝑚N 𝐴<P (𝐹𝑚))
caucvgprpr.lim 𝐿 = ⟨{𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)}, {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}⟩
caucvgprprlemexb.q (𝜑𝑄P)
caucvgprprlemexb.r (𝜑𝑅N)
Assertion
Ref Expression
caucvgprprlemexb (𝜑 → (((𝐿 +P 𝑄) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑅, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑅, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ((𝐹𝑅) +P 𝑄) → ∃𝑏N (((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ) <Q 𝑞}⟩) +P (𝑄 +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑅, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑅, 1𝑜⟩] ~Q ) <Q 𝑞}⟩))<P ((𝐹𝑅) +P 𝑄)))
Distinct variable groups:   𝐴,𝑚   𝑚,𝐹   𝐴,𝑟,𝑚   𝐹,𝑏   𝑘,𝐹,𝑙,𝑛,𝑢   𝐹,𝑟   𝐿,𝑏   𝑘,𝐿   𝑅,𝑏,𝑝,𝑞   𝜑,𝑏   𝑘,𝑝,𝑞,𝑟,𝑙,𝑢   𝑟,𝑏
Allowed substitution hints:   𝜑(𝑢,𝑘,𝑚,𝑛,𝑟,𝑞,𝑝,𝑙)   𝐴(𝑢,𝑘,𝑛,𝑞,𝑝,𝑏,𝑙)   𝑄(𝑢,𝑘,𝑚,𝑛,𝑟,𝑞,𝑝,𝑏,𝑙)   𝑅(𝑢,𝑘,𝑚,𝑛,𝑟,𝑙)   𝐹(𝑞,𝑝)   𝐿(𝑢,𝑚,𝑛,𝑟,𝑞,𝑝,𝑙)

Proof of Theorem caucvgprprlemexb
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 caucvgprpr.f . . . . . 6 (𝜑𝐹:NP)
2 caucvgprpr.cau . . . . . 6 (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛)<P ((𝐹𝑘) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩) ∧ (𝐹𝑘)<P ((𝐹𝑛) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩))))
3 caucvgprpr.bnd . . . . . 6 (𝜑 → ∀𝑚N 𝐴<P (𝐹𝑚))
4 caucvgprpr.lim . . . . . 6 𝐿 = ⟨{𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)}, {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}⟩
51, 2, 3, 4caucvgprprlemclphr 6957 . . . . 5 (𝜑𝐿P)
6 caucvgprprlemexb.r . . . . . 6 (𝜑𝑅N)
7 recnnpr 6800 . . . . . 6 (𝑅N → ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑅, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑅, 1𝑜⟩] ~Q ) <Q 𝑞}⟩ ∈ P)
86, 7syl 14 . . . . 5 (𝜑 → ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑅, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑅, 1𝑜⟩] ~Q ) <Q 𝑞}⟩ ∈ P)
9 addclpr 6789 . . . . 5 ((𝐿P ∧ ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑅, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑅, 1𝑜⟩] ~Q ) <Q 𝑞}⟩ ∈ P) → (𝐿 +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑅, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑅, 1𝑜⟩] ~Q ) <Q 𝑞}⟩) ∈ P)
105, 8, 9syl2anc 403 . . . 4 (𝜑 → (𝐿 +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑅, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑅, 1𝑜⟩] ~Q ) <Q 𝑞}⟩) ∈ P)
111, 6ffvelrnd 5335 . . . 4 (𝜑 → (𝐹𝑅) ∈ P)
12 caucvgprprlemexb.q . . . 4 (𝜑𝑄P)
13 ltaprg 6871 . . . 4 (((𝐿 +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑅, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑅, 1𝑜⟩] ~Q ) <Q 𝑞}⟩) ∈ P ∧ (𝐹𝑅) ∈ P𝑄P) → ((𝐿 +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑅, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑅, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P (𝐹𝑅) ↔ (𝑄 +P (𝐿 +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑅, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑅, 1𝑜⟩] ~Q ) <Q 𝑞}⟩))<P (𝑄 +P (𝐹𝑅))))
1410, 11, 12, 13syl3anc 1170 . . 3 (𝜑 → ((𝐿 +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑅, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑅, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P (𝐹𝑅) ↔ (𝑄 +P (𝐿 +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑅, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑅, 1𝑜⟩] ~Q ) <Q 𝑞}⟩))<P (𝑄 +P (𝐹𝑅))))
15 addassprg 6831 . . . . . 6 ((𝑄P𝐿P ∧ ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑅, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑅, 1𝑜⟩] ~Q ) <Q 𝑞}⟩ ∈ P) → ((𝑄 +P 𝐿) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑅, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑅, 1𝑜⟩] ~Q ) <Q 𝑞}⟩) = (𝑄 +P (𝐿 +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑅, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑅, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)))
1612, 5, 8, 15syl3anc 1170 . . . . 5 (𝜑 → ((𝑄 +P 𝐿) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑅, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑅, 1𝑜⟩] ~Q ) <Q 𝑞}⟩) = (𝑄 +P (𝐿 +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑅, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑅, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)))
17 addcomprg 6830 . . . . . . 7 ((𝑄P𝐿P) → (𝑄 +P 𝐿) = (𝐿 +P 𝑄))
1812, 5, 17syl2anc 403 . . . . . 6 (𝜑 → (𝑄 +P 𝐿) = (𝐿 +P 𝑄))
1918oveq1d 5558 . . . . 5 (𝜑 → ((𝑄 +P 𝐿) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑅, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑅, 1𝑜⟩] ~Q ) <Q 𝑞}⟩) = ((𝐿 +P 𝑄) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑅, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑅, 1𝑜⟩] ~Q ) <Q 𝑞}⟩))
2016, 19eqtr3d 2116 . . . 4 (𝜑 → (𝑄 +P (𝐿 +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑅, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑅, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)) = ((𝐿 +P 𝑄) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑅, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑅, 1𝑜⟩] ~Q ) <Q 𝑞}⟩))
21 addcomprg 6830 . . . . 5 ((𝑄P ∧ (𝐹𝑅) ∈ P) → (𝑄 +P (𝐹𝑅)) = ((𝐹𝑅) +P 𝑄))
2212, 11, 21syl2anc 403 . . . 4 (𝜑 → (𝑄 +P (𝐹𝑅)) = ((𝐹𝑅) +P 𝑄))
2320, 22breq12d 3806 . . 3 (𝜑 → ((𝑄 +P (𝐿 +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑅, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑅, 1𝑜⟩] ~Q ) <Q 𝑞}⟩))<P (𝑄 +P (𝐹𝑅)) ↔ ((𝐿 +P 𝑄) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑅, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑅, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ((𝐹𝑅) +P 𝑄)))
2414, 23bitrd 186 . 2 (𝜑 → ((𝐿 +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑅, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑅, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P (𝐹𝑅) ↔ ((𝐿 +P 𝑄) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑅, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑅, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ((𝐹𝑅) +P 𝑄)))
251adantr 270 . . . . 5 ((𝜑 ∧ (𝐿 +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑅, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑅, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P (𝐹𝑅)) → 𝐹:NP)
262adantr 270 . . . . 5 ((𝜑 ∧ (𝐿 +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑅, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑅, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P (𝐹𝑅)) → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛)<P ((𝐹𝑘) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩) ∧ (𝐹𝑘)<P ((𝐹𝑛) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩))))
273adantr 270 . . . . 5 ((𝜑 ∧ (𝐿 +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑅, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑅, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P (𝐹𝑅)) → ∀𝑚N 𝐴<P (𝐹𝑚))
28 nnnq 6674 . . . . . . 7 (𝑅N → [⟨𝑅, 1𝑜⟩] ~QQ)
29 recclnq 6644 . . . . . . 7 ([⟨𝑅, 1𝑜⟩] ~QQ → (*Q‘[⟨𝑅, 1𝑜⟩] ~Q ) ∈ Q)
306, 28, 293syl 17 . . . . . 6 (𝜑 → (*Q‘[⟨𝑅, 1𝑜⟩] ~Q ) ∈ Q)
3130adantr 270 . . . . 5 ((𝜑 ∧ (𝐿 +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑅, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑅, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P (𝐹𝑅)) → (*Q‘[⟨𝑅, 1𝑜⟩] ~Q ) ∈ Q)
3211adantr 270 . . . . 5 ((𝜑 ∧ (𝐿 +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑅, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑅, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P (𝐹𝑅)) → (𝐹𝑅) ∈ P)
33 simpr 108 . . . . 5 ((𝜑 ∧ (𝐿 +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑅, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑅, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P (𝐹𝑅)) → (𝐿 +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑅, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑅, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P (𝐹𝑅))
3425, 26, 27, 4, 31, 32, 33caucvgprprlemexbt 6958 . . . 4 ((𝜑 ∧ (𝐿 +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑅, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑅, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P (𝐹𝑅)) → ∃𝑏N (((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ) <Q 𝑞}⟩) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑅, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑅, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P (𝐹𝑅))
35 ltaprg 6871 . . . . . . . 8 ((𝑓P𝑔PP) → (𝑓<P 𝑔 ↔ ( +P 𝑓)<P ( +P 𝑔)))
3635adantl 271 . . . . . . 7 ((((𝜑 ∧ (𝐿 +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑅, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑅, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P (𝐹𝑅)) ∧ 𝑏N) ∧ (𝑓P𝑔PP)) → (𝑓<P 𝑔 ↔ ( +P 𝑓)<P ( +P 𝑔)))
3725ffvelrnda 5334 . . . . . . . . 9 (((𝜑 ∧ (𝐿 +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑅, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑅, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P (𝐹𝑅)) ∧ 𝑏N) → (𝐹𝑏) ∈ P)
38 recnnpr 6800 . . . . . . . . . 10 (𝑏N → ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ) <Q 𝑞}⟩ ∈ P)
3938adantl 271 . . . . . . . . 9 (((𝜑 ∧ (𝐿 +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑅, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑅, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P (𝐹𝑅)) ∧ 𝑏N) → ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ) <Q 𝑞}⟩ ∈ P)
40 addclpr 6789 . . . . . . . . 9 (((𝐹𝑏) ∈ P ∧ ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ) <Q 𝑞}⟩ ∈ P) → ((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ) <Q 𝑞}⟩) ∈ P)
4137, 39, 40syl2anc 403 . . . . . . . 8 (((𝜑 ∧ (𝐿 +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑅, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑅, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P (𝐹𝑅)) ∧ 𝑏N) → ((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ) <Q 𝑞}⟩) ∈ P)
426ad2antrr 472 . . . . . . . . 9 (((𝜑 ∧ (𝐿 +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑅, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑅, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P (𝐹𝑅)) ∧ 𝑏N) → 𝑅N)
4342, 7syl 14 . . . . . . . 8 (((𝜑 ∧ (𝐿 +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑅, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑅, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P (𝐹𝑅)) ∧ 𝑏N) → ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑅, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑅, 1𝑜⟩] ~Q ) <Q 𝑞}⟩ ∈ P)
44 addclpr 6789 . . . . . . . 8 ((((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ) <Q 𝑞}⟩) ∈ P ∧ ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑅, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑅, 1𝑜⟩] ~Q ) <Q 𝑞}⟩ ∈ P) → (((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ) <Q 𝑞}⟩) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑅, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑅, 1𝑜⟩] ~Q ) <Q 𝑞}⟩) ∈ P)
4541, 43, 44syl2anc 403 . . . . . . 7 (((𝜑 ∧ (𝐿 +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑅, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑅, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P (𝐹𝑅)) ∧ 𝑏N) → (((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ) <Q 𝑞}⟩) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑅, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑅, 1𝑜⟩] ~Q ) <Q 𝑞}⟩) ∈ P)
4611ad2antrr 472 . . . . . . 7 (((𝜑 ∧ (𝐿 +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑅, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑅, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P (𝐹𝑅)) ∧ 𝑏N) → (𝐹𝑅) ∈ P)
4712ad2antrr 472 . . . . . . 7 (((𝜑 ∧ (𝐿 +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑅, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑅, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P (𝐹𝑅)) ∧ 𝑏N) → 𝑄P)
48 addcomprg 6830 . . . . . . . 8 ((𝑓P𝑔P) → (𝑓 +P 𝑔) = (𝑔 +P 𝑓))
4948adantl 271 . . . . . . 7 ((((𝜑 ∧ (𝐿 +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑅, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑅, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P (𝐹𝑅)) ∧ 𝑏N) ∧ (𝑓P𝑔P)) → (𝑓 +P 𝑔) = (𝑔 +P 𝑓))
5036, 45, 46, 47, 49caovord2d 5701 . . . . . 6 (((𝜑 ∧ (𝐿 +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑅, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑅, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P (𝐹𝑅)) ∧ 𝑏N) → ((((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ) <Q 𝑞}⟩) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑅, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑅, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P (𝐹𝑅) ↔ ((((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ) <Q 𝑞}⟩) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑅, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑅, 1𝑜⟩] ~Q ) <Q 𝑞}⟩) +P 𝑄)<P ((𝐹𝑅) +P 𝑄)))
51 addassprg 6831 . . . . . . . 8 ((((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ) <Q 𝑞}⟩) ∈ P ∧ ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑅, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑅, 1𝑜⟩] ~Q ) <Q 𝑞}⟩ ∈ P𝑄P) → ((((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ) <Q 𝑞}⟩) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑅, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑅, 1𝑜⟩] ~Q ) <Q 𝑞}⟩) +P 𝑄) = (((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ) <Q 𝑞}⟩) +P (⟨{𝑝𝑝 <Q (*Q‘[⟨𝑅, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑅, 1𝑜⟩] ~Q ) <Q 𝑞}⟩ +P 𝑄)))
5241, 43, 47, 51syl3anc 1170 . . . . . . 7 (((𝜑 ∧ (𝐿 +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑅, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑅, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P (𝐹𝑅)) ∧ 𝑏N) → ((((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ) <Q 𝑞}⟩) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑅, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑅, 1𝑜⟩] ~Q ) <Q 𝑞}⟩) +P 𝑄) = (((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ) <Q 𝑞}⟩) +P (⟨{𝑝𝑝 <Q (*Q‘[⟨𝑅, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑅, 1𝑜⟩] ~Q ) <Q 𝑞}⟩ +P 𝑄)))
5352breq1d 3803 . . . . . 6 (((𝜑 ∧ (𝐿 +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑅, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑅, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P (𝐹𝑅)) ∧ 𝑏N) → (((((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ) <Q 𝑞}⟩) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑅, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑅, 1𝑜⟩] ~Q ) <Q 𝑞}⟩) +P 𝑄)<P ((𝐹𝑅) +P 𝑄) ↔ (((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ) <Q 𝑞}⟩) +P (⟨{𝑝𝑝 <Q (*Q‘[⟨𝑅, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑅, 1𝑜⟩] ~Q ) <Q 𝑞}⟩ +P 𝑄))<P ((𝐹𝑅) +P 𝑄)))
54 addcomprg 6830 . . . . . . . . 9 ((⟨{𝑝𝑝 <Q (*Q‘[⟨𝑅, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑅, 1𝑜⟩] ~Q ) <Q 𝑞}⟩ ∈ P𝑄P) → (⟨{𝑝𝑝 <Q (*Q‘[⟨𝑅, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑅, 1𝑜⟩] ~Q ) <Q 𝑞}⟩ +P 𝑄) = (𝑄 +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑅, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑅, 1𝑜⟩] ~Q ) <Q 𝑞}⟩))
5543, 47, 54syl2anc 403 . . . . . . . 8 (((𝜑 ∧ (𝐿 +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑅, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑅, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P (𝐹𝑅)) ∧ 𝑏N) → (⟨{𝑝𝑝 <Q (*Q‘[⟨𝑅, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑅, 1𝑜⟩] ~Q ) <Q 𝑞}⟩ +P 𝑄) = (𝑄 +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑅, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑅, 1𝑜⟩] ~Q ) <Q 𝑞}⟩))
5655oveq2d 5559 . . . . . . 7 (((𝜑 ∧ (𝐿 +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑅, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑅, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P (𝐹𝑅)) ∧ 𝑏N) → (((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ) <Q 𝑞}⟩) +P (⟨{𝑝𝑝 <Q (*Q‘[⟨𝑅, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑅, 1𝑜⟩] ~Q ) <Q 𝑞}⟩ +P 𝑄)) = (((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ) <Q 𝑞}⟩) +P (𝑄 +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑅, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑅, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)))
5756breq1d 3803 . . . . . 6 (((𝜑 ∧ (𝐿 +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑅, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑅, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P (𝐹𝑅)) ∧ 𝑏N) → ((((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ) <Q 𝑞}⟩) +P (⟨{𝑝𝑝 <Q (*Q‘[⟨𝑅, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑅, 1𝑜⟩] ~Q ) <Q 𝑞}⟩ +P 𝑄))<P ((𝐹𝑅) +P 𝑄) ↔ (((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ) <Q 𝑞}⟩) +P (𝑄 +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑅, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑅, 1𝑜⟩] ~Q ) <Q 𝑞}⟩))<P ((𝐹𝑅) +P 𝑄)))
5850, 53, 573bitrd 212 . . . . 5 (((𝜑 ∧ (𝐿 +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑅, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑅, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P (𝐹𝑅)) ∧ 𝑏N) → ((((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ) <Q 𝑞}⟩) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑅, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑅, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P (𝐹𝑅) ↔ (((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ) <Q 𝑞}⟩) +P (𝑄 +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑅, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑅, 1𝑜⟩] ~Q ) <Q 𝑞}⟩))<P ((𝐹𝑅) +P 𝑄)))
5958rexbidva 2366 . . . 4 ((𝜑 ∧ (𝐿 +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑅, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑅, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P (𝐹𝑅)) → (∃𝑏N (((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ) <Q 𝑞}⟩) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑅, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑅, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P (𝐹𝑅) ↔ ∃𝑏N (((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ) <Q 𝑞}⟩) +P (𝑄 +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑅, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑅, 1𝑜⟩] ~Q ) <Q 𝑞}⟩))<P ((𝐹𝑅) +P 𝑄)))
6034, 59mpbid 145 . . 3 ((𝜑 ∧ (𝐿 +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑅, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑅, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P (𝐹𝑅)) → ∃𝑏N (((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ) <Q 𝑞}⟩) +P (𝑄 +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑅, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑅, 1𝑜⟩] ~Q ) <Q 𝑞}⟩))<P ((𝐹𝑅) +P 𝑄))
6160ex 113 . 2 (𝜑 → ((𝐿 +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑅, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑅, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P (𝐹𝑅) → ∃𝑏N (((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ) <Q 𝑞}⟩) +P (𝑄 +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑅, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑅, 1𝑜⟩] ~Q ) <Q 𝑞}⟩))<P ((𝐹𝑅) +P 𝑄)))
6224, 61sylbird 168 1 (𝜑 → (((𝐿 +P 𝑄) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑅, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑅, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ((𝐹𝑅) +P 𝑄) → ∃𝑏N (((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ) <Q 𝑞}⟩) +P (𝑄 +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑅, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑅, 1𝑜⟩] ~Q ) <Q 𝑞}⟩))<P ((𝐹𝑅) +P 𝑄)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103  w3a 920   = wceq 1285  wcel 1434  {cab 2068  wral 2349  wrex 2350  {crab 2353  cop 3409   class class class wbr 3793  wf 4928  cfv 4932  (class class class)co 5543  1𝑜c1o 6058  [cec 6170  Ncnpi 6524   <N clti 6527   ~Q ceq 6531  Qcnq 6532   +Q cplq 6534  *Qcrq 6536   <Q cltq 6537  Pcnp 6543   +P cpp 6545  <P cltp 6547
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-coll 3901  ax-sep 3904  ax-nul 3912  ax-pow 3956  ax-pr 3972  ax-un 4196  ax-setind 4288  ax-iinf 4337
This theorem depends on definitions:  df-bi 115  df-dc 777  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1687  df-eu 1945  df-mo 1946  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ne 2247  df-ral 2354  df-rex 2355  df-reu 2356  df-rab 2358  df-v 2604  df-sbc 2817  df-csb 2910  df-dif 2976  df-un 2978  df-in 2980  df-ss 2987  df-nul 3259  df-pw 3392  df-sn 3412  df-pr 3413  df-op 3415  df-uni 3610  df-int 3645  df-iun 3688  df-br 3794  df-opab 3848  df-mpt 3849  df-tr 3884  df-eprel 4052  df-id 4056  df-po 4059  df-iso 4060  df-iord 4129  df-on 4131  df-suc 4134  df-iom 4340  df-xp 4377  df-rel 4378  df-cnv 4379  df-co 4380  df-dm 4381  df-rn 4382  df-res 4383  df-ima 4384  df-iota 4897  df-fun 4934  df-fn 4935  df-f 4936  df-f1 4937  df-fo 4938  df-f1o 4939  df-fv 4940  df-ov 5546  df-oprab 5547  df-mpt2 5548  df-1st 5798  df-2nd 5799  df-recs 5954  df-irdg 6019  df-1o 6065  df-2o 6066  df-oadd 6069  df-omul 6070  df-er 6172  df-ec 6174  df-qs 6178  df-ni 6556  df-pli 6557  df-mi 6558  df-lti 6559  df-plpq 6596  df-mpq 6597  df-enq 6599  df-nqqs 6600  df-plqqs 6601  df-mqqs 6602  df-1nqqs 6603  df-rq 6604  df-ltnqqs 6605  df-enq0 6676  df-nq0 6677  df-0nq0 6678  df-plq0 6679  df-mq0 6680  df-inp 6718  df-iplp 6720  df-iltp 6722
This theorem is referenced by:  caucvgprprlemaddq  6960
  Copyright terms: Public domain W3C validator